
2 May 2017 

 

 

 

 

 

An Ansible implementation of a self-
configuring Beowulf cluster of Raspberry 
Pis in a localised environment for the 
purpose of distributed computing using 
Open MPI 
 

 

Theocharis Ledakis 

Student ID: 5717206 

Supervisor: Dr Carey Pridgeon 

Course: BSc Computing (Honours) with Industrial Placement  

School of Computing, Engineering and Mathematics, Coventry 

University 

 

 

Project repository: 

https://gitlab.com/ledakis/picluster 

 

  



 

  



 

  



Table of Contents 
a. Abstract ............................................................................................................................................... 6 

b. Acknowledgements ............................................................................................................................. 6 

1. Introduction ........................................................................................................................................ 7 

2. Term definitions .................................................................................................................................. 8 

3. Literature review ................................................................................................................................. 9 

3.1 Introduction .................................................................................................................................. 9 

3.2 Old cluster systems ....................................................................................................................... 9 

3.3 Recent approaches to cluster systems with cheap components .................................................. 9 

3.3.1 Broberg cluster ....................................................................................................................... 9 

3.3.2 Iridis-pi ................................................................................................................................. 10 

3.3.3 RPiCluster ............................................................................................................................. 10 

3.3.4 DeConinck cluster ................................................................................................................ 11 

3.3.5 Pi Dramble ............................................................................................................................ 12 

3.4 Conclusion ................................................................................................................................... 12 

4. Method ............................................................................................................................................. 13 

4.1 Project deliverables..................................................................................................................... 13 

4.1.1 Network independent .......................................................................................................... 13 

4.1.2 Unattended setup ................................................................................................................ 13 

4.1.3 Input will be limited ............................................................................................................. 13 

4.1.4 Easy access to the master .................................................................................................... 13 

4.1.5 Documentation .................................................................................................................... 13 

4.2 Methodology ............................................................................................................................... 13 

4.3 Why Git?...................................................................................................................................... 14 

4.4 Script injection ............................................................................................................................ 14 

4.4.1 Choice of initiation for my script .......................................................................................... 14 

4.4.2 Implementation ................................................................................................................... 15 

4.5 run.sh .......................................................................................................................................... 16 

4.6 IP update scripts .......................................................................................................................... 20 

4.7 Master node scripts .................................................................................................................... 21 

4.7.1 Cron files .............................................................................................................................. 21 

4.7.2 Inventory generator ............................................................................................................. 22 

4.8 Ansible ......................................................................................................................................... 23 

4.9 Python user interface .................................................................................................................. 26 

4.10 SSH to master and Documentation........................................................................................... 28 

5. Evaluation - Results ........................................................................................................................... 30 



5.1 Deliverables ................................................................................................................................. 30 

5.2 Demonstration ............................................................................................................................ 31 

6. Project management ......................................................................................................................... 32 

7. Discussion .......................................................................................................................................... 33 

8. Reflection on ethics ........................................................................................................................... 34 

8.1 Social aspect ................................................................................................................................ 34 

8.2 Legal aspect/Licencing ................................................................................................................ 34 

8.3. Ethics .......................................................................................................................................... 34 

9. Conclusion ......................................................................................................................................... 35 

10. Bibliography .................................................................................................................................... 36 

11. Appendix ......................................................................................................................................... 38 

11.1 Project Proposal ........................................................................................................................ 38 

11.2 Meeting diary ............................................................................................................................ 42 

11.3 Presentation material ............................................................................................................... 56 

11.4 Handwritten notes/Diary .......................................................................................................... 59 

 

 

  



a. Abstract 
 
Although there are projects that combine Ansible with Raspberry Pis, or OpenMPI with Raspberry 
Pis, there is none to combine the benefits of all those software technologies to automate the 
deployment of any number of Raspberry Pis with minimum intervention from the user in order to 
run OpenMPI projects. 
 
This project’s aim is to accomplish that and provide a complete package that can be used with little 
intervention from the end user. The completed project is making use of git and the Bash scripting 
language to initially establish a method of announcing the nodes’ IP addresses to a central location, 
Ansible to configure at a higher level the swarm from a master node, and Python for the front-end 
tool that lets the user configure the few parameters needed for the swarm to operate and create the 
SD card images. Finally, OpenMPI is installed along with an NFS server and NFS clients for the nodes 
to communicate files. This implementation does not try to initialise the cluster using zeroconf 
techniques, due to restrictions on Coventry University’s network. 
 
The final code has been tested in a small environment of 3-6 Raspberry Pis and is working as 
expected. The project is also released as an open source repository on the following address: 
https://gitlab.com/ledakis/picluster 
The repository can be cloned and used directly to run the project from the user’s account. 
 
 
Keywords: 

- MPI 
- Raspberry Pi 
- Ansible 
- Automation 
- Beowulf cluster 
- Distributed computing 

 
 

b. Acknowledgements 
I would like to thank my supervisor Dr Carey Pridgeon for the continuous help and insights to the 

questions and problems I have had during this project, as well as sponsoring my trip to a developer 

conference and for providing the hardware, Raspberry Pis and power supplies. The completion of 

the problem could not have happened without the support of my good friend Manolis Kiagias in 

some highly technical matters. 

Finally, I am grateful to the open source community that has produced such high-quality software, 

namely Linux, Debian, OpenMPI, Ansible, Raspbian, SSH, Python, Bash and others. I hope the 

resulting code of this project is going to be used by the community and cherished. 

 

  

https://gitlab.com/ledakis/picluster


1. Introduction 
 

The research question for this paper as explained in the Detailed proposal (Appendix 11.1) is: 

How could the process of deploying a Raspberry Pi cluster in a local network be automated in order 

to achieve minimal configuration from the user? 

The purpose of this project is to offer a set of tools that can easily and with little configuration and 

attention from the user, configure a cluster of Raspberry Pis using open source software and aiming 

to be modular, by using the Ansible automation framework. 

Specifically, I will discuss ways and methodologies to manipulate the initialisation scripts of the 

Raspbian OS so that the nodes can start organising into a cluster, scripting of the automation of git 

updates back to GitLab and, as mentioned, creation of the necessary Ansible playbooks that 

continue from where the bash scripts finish and install and configure any software the user requires. 

For this project OpenMPI and NFS will be demonstrated, but because of the modular nature of 

Ansible many more tools can be added on the fly. 

A potential reader of this report needs to have basic shell/bash scripting experience along with some 

knowledge of how Linux systems work, and an understanding of clusters and basic networking. 

OpenMPI is only used as the final example of the working cluster, so experience with this is valuable 

only to run the final product and program with a distributed set of runners in mind. 

 

 

 

 

  



2. Term definitions 
A list of definitions that are going to be used throughout this report. 

 

- Raspberry Pi 
A single board computer that was developed by the Raspberry Pi Foundation to be 
used in education in 2012. Since then, because of its low price (about £24) it has 
been used in many hobby projects in the community and has been a complete 
success. Two more versions with upgraded specs have been released to succeed the 
original. 
 

- MPI and OpenMPI 
Message Passing Interface is a system designed to enable programmers to create 
programs that can run on a distributed environment, like a cluster. 
 

- Beowulf 
Beowulf cluster is a cluster consisting of identical nodes, usually old commodity 
hardware.  
 

- NFS 
Network File Storage 
 

- OS 
Operating System 
 

- Ansible Galaxy 
A portal with collections of Ansible playbooks, made by the community. 
 

- Playbook 
The Ansible playbook is a set of scripts made in YaML format that are run by Ansible 
to achieve a variation of tasks, from administrative to scripting. 
 

- Bash 
The default shell for Unix systems. An extension to the original Bourne Shell, now 
called “Bourne Again SHell”. 
 

- Asciicast 
A screencast, not with video but with the shell. This tool records the terminal session 
and can replay the STDIN/STDOUT to viewers, which makes an excellent tool to 
demonstrate shell software. 
 

- dd 
A Unix command that is a short, and a play of cc (Carbon Copy). It copies the origin 
to the destination as an exact copy because it copies in a lower level. Because of 
that, to use it for accessing system devices such as disks, super user privileges are 
required. 

 



  

3. Literature review 
 

3.1 Introduction 
 

In this section I will discuss what other findings have led to forming my research question. The 

research on literature will begin by older cluster examples used in the industry and academia and 

then focus on smaller teams with less budget that achieve the same effect by using the Beowulf 

approach. Finally, I will explain how the current literature offers solutions that offer either 

automation but no integration with MPI or just MPI clusters that have to be setup manually.  

 

3.2 Old cluster systems 
Computer clusters is not a recent computing development, but instead it has been developed and 

utilised for many decades. There has been a plethora of big cluster systems used mostly by the 

military, but most importantly by universities and large tech companies. Good examples of such 

systems are the computing system of CERN (Bahyl et al. 2003, CERN 2012), the National Science 

Foundation’s “TeraGrid” (NSF 2005), large supercomputers like the IBM Watson or smaller Beowulf 

deployments as the “Chiba City” or “Jazz”, 256-node and 350-node respectively clusters at the 

Argonne National Laboratory (Gropp et al. 2003). Such systems are used mainly in research because 

they offer a cost effective solution to problems that require high performance and fault tolerance 

according to Sterling (2002). 

Academics (Becker et al. 1995), small companies (Gardner 2014) and individuals (Stephenson 2005) 

have as well created clusters with a handful of nodes that were based on cheap hardware and used 

open source software to run. In 1995 and 2004 the software that Becker (1995) and Gardner (2004) 

used was very much like the ones that are in use today, an open source operating system (FreeBSD), 

OpenMPI and NFS, making them good choices to demonstrate the result of the working cluster in 

this project. 

 

3.3 Recent approaches to cluster systems with cheap components 
Although the software used for communication between the nodes has not changed (MPI/NFS) the 

approach to deploy the nodes and the hardware has.  

Since the Raspberry Pi foundation released the first generation of the computer it has been used not 

only in primary schools (the target audience, initially), but used heavily by hobbyists and academics 

to showcase various projects. This was an effect of the low cost of the device and the very good 

Linux support, initially from Debian, one of the most popular Linux distributions, and then by 

Archlinux, Ubuntu and others. 

3.3.1 Broberg cluster 
The first attempt to run OpenMPI on the Raspberry Pi platform was by Broberg (2012) who, at that 

time, had to compile the binaries for the software to work as it was not included in the distribution’s 

repositories. That of course is a very technical approach and is so time consuming that he had to run 

the compilation inside a virtual machine emulating the arm architecture on his personal computer. 



Since then, the binaries for OpenMPI have been released in the official Raspbian repositories and 

can be used like any other package available there. 

 

3.3.2 Iridis-pi 
A year later Professor Cox and his team at the university of Southampton have published a paper 

about Iridis-pi (Cox et al. 2014). Iridis-pi (Figure 1) is a 64-node cluster made of Raspberry Pis that 

has been configured manually to run LINPACK, OpenMPI and other benchmarking software. In this 

paper, they propose that the cluster of Raspberry Pis is ideal for academic purposes and argue that: 

“The small size, low power usage, low cost and portability of the “Iridis-Pi” cluster 

must be contrasted against its relatively low compute power and limited 

communications bandwidth (compared to a contemporary, traditional HPC 

cluster), making this architecture most appropriate as a teaching cluster.” (Cox et 

al., 2014, p7) 

One of the goals of starting this project has been the fact that Coventry University offers a parallel 

and distributed computing module, 370CT, that is based on OpenMPI. The module would definitely 

benefit from a way to help the lecturers deploy a cluster of cheap machines easily, to demonstrate 

the principles of distributed computing in workshops.  

 

3.3.3 RPiCluster 
Another cluster demonstration was the one named RPiCluster from Kiepert (2013), who has made a 

32-node cluster and demonstrated its distributed processing capabilities in his report. Kiepert is 

using the Archlinux distribution which, as he suggests, is more efficient. Unfortunately, he is 

compiling the source code for his MPI software (MPICH), which, for the purpose of this project, was 

not acceptable as it is requiring substantial technical knowledge and time from the user. 

Furthermore, his approach configures manually the images needed for the nodes, adding complexity 

 
Figure 1: Iridis-pi (Cox et al. 2014) 

 



to the end result. I aim to remove this complexity from the user and automate as many components 

as possible to deliver a working cluster with OpenMPI installed and ready to accept commands. 

 

 
Figure 2: RPiCluster (Kiepert 2013) 

 

Kiepert’s paper shows that a cluster of Raspberry Pis can be organised in a compact box and 

powered from the IO headers instead of what one would normally do, which is power the device 

from the micro-USB port. He has demonstrated that he can pack 32 compute nodes in an enclosure 

similar to a desktop case as can be seen in Figure 2. In this project, I am going to be deploying 

Raspberry Pis in the usual way, connecting only the USB port to the mains and the Ethernet port to 

access the university network. This is a choice taken to make the process of creating a cluster as 

simple as possible for the user. 

 

3.3.4 DeConinck cluster 
Adam DeConinck has created an implementation of a Ansible-configurable Raspberry Pi cluster on 

his GitHub repository (DeConinck 2013, Nvidia and DeConinck 2013). His approach is very similar to 

what I aim to have installed at the end of the configuration of the cluster. 

He uses Raspbian to operate the nodes, OpenMPI and NFS for the computation and Ganglia to 

monitor the system. His guide shows very good understanding of how to set up cluster systems with 

Ansible and that has been a source of inspiration for my own implementation. 

One interesting step in his guide is the fact that he is using a different Ansible playbook for the 

master node (called “headnode”) and another for the slave nodes.  

Unfortunately, DeConinck’s approach, like the previous ones mentioned, does not have user 

automation in mind for the initial configuration part. His guide, explains that the user has to clone SD 

cards, which is perfectly acceptable for the purposes of “as less user interaction as possible” that I 

want to achieve, but he is creating simple Raspbian images and does not include any specific 



element in the system that would enable him to learn the booted Raspberry Pi’s IP address. He just 

enables SSH and finds the IP using network mapping tools. Instead, he could add enough scripts/text 

files in the SD cards to let a central location know their network IP address, maybe even download 

and run scripts from that central location that the user has control of. 

DeConinck’s example as I have mentioned seems to be the closest to what I have in mind for a 

cluster that requires minimum intervention from the user (only the SD card imaging process is 

needed) and manages to configure itself to have an MPI, NFS software installed via Ansible 

playbooks. 

3.3.5 Pi Dramble 
Jeff Geerling has published his own implementation of a Beowulf cluster of Raspberry Pis that use 

Ansible to set up the high-level software. He is using Raspbian and Ansible to set up the nodes to 

serve a Drupal website though a High Availability cluster (Geerling 2015).  

His project offers very good documentation on how to set up the Raspbian OS with Ansible and he 

has packaged a library of Ansible playbooks to the Ansible Galaxy repository.  

On the other hand, Geerling’s project does not automatically configure itself and does not install the 

software I require for this project (OpenMPI and NFS). 

 

3.4 Conclusion 
There are many good approaches to creating clusters with Raspberry Pi using many different tools 

and with many different software installed on the systems. 

The old cluster examples I have talked about all use heavily customised software to configure and 

automate processes on the nodes manually. Broberg, Iridis-pi, RPiCluster and the DeConinck clusters 

all successfully install and configure OpenMPI for the purpose of distributed computing, but fail to 

achieve minimum interaction from the user, by requiring manual network configuration on each 

node. Finally Pi Dramble both does not automate the network setup and installs a LEMP stack 

instead of the MPI that I require. 

 

These projects have shown that the Raspberry Pis can be used in a cluster to enable educators and 

students to discuss effectively how distributed computing works, test algorithms and programs on 

such a cluster with a very low budget.  

Although the academics that work with distributed systems usually have good knowledge on how to 

deploy those systems, this is not always the case and it can be a very difficult experience if they must 

find their way out of a problematic setup. Based on the previous findings I will be making a set of 

tools that will set up a Beowulf cluster of Raspberry Pis using Ansible to set up the OpenMPI 

software automatically and with as little as possible intervention from the user. 

 

  



4. Method 
 

4.1 Project deliverables 
After discussing with my supervisor on the findings that are discussed in the Literature review 

conclusion (Chapter 3.4), I have compiled a list of what this project aims to deliver and, by doing 

that, solve the problem discussed earlier. 

4.1.1 Network independent 
The scripts and the automation must be network agnostic. This means that the user will not have to 

ask a network administrator for any particular information and/or special access, such as, for 

example, static IP addresses or the ability to broadcast. The cluster will use the standard network 

stack of the Raspbian OS, which will act like any other machine connected to the network and get a 

standard IP address. That IP will be then communicated to a central location (git repository) and will 

thus allow each node to know about the rest. 

4.1.2 Unattended setup 
After imaging the SD cards the user should not have to do any other work for the system to get 

ready, apart from plugging in the devices. As long as the nodes have network (and internet) access 

to the git repository then the system will start setting itself up. 

4.1.3 Input will be limited 
Although I aim for as little user effort and interaction as possible, unavoidably they will have to 

perform a few trivial operations before the automation begins. The user will need to pass the git 

repository address, the private and the public key to access that repository to the script that creates 

the SD cards for the nodes. As an extra feature, I would like to add a question that lets the user 

choose if the generated SD card is for a master node or not. 

4.1.4 Easy access to the master 
The final feature that is required by this project is that the user will be able to connect easily to the 

master node and run OpenMPI commands/programs. As an extra feature, the user will be able to 

run extra Ansible playbooks if they wish to further extend the functionality of their cluster. 

4.1.5 Documentation 
Although not a feature, this is one of the deliverables for this project especially because it is going to 

be open source and potentially used by the community and further enhanced and tweaked. 

 

4.2 Methodology 
As I have explained earlier, the project will be mostly a compilation of programs and scripts that 

manage to set up the cluster using automation tools entirely. Thus, the primary research method will 

be building/programming and investigating the results to see if the deliverables are met. Along with 

the programming a lot of additional research for the specific technologies will be conducted to find 

the solutions that I find best for this project.  

The investigatory part of the build methodology has been conducted in the third chapter and 

conclusions have been made about what is missing from the current literature that I am going to try 

and fill. In the following sections I will discuss how I have developed each of the several components 

of this cluster project and at the end how all work together. 



4.3 Why Git? 
As I have explained earlier, one of my goals is for the cluster to be able to share the nodes’ IPs to a 

centralised location/service which then would be used by Ansible.  This service needs to be running 

at least initially for the Raspberry Pis to auto-configure. 

Having a custom full stack application running just for this purpose is a waste of programming time 

and since much simpler solutions exist it adds unnecessary complexity for the user. The suggestion 

from my supervisor in one of the early meetings was to use git to handle the orchestrating part, 

which was an interesting idea for me to explore. 

SaaS providers like GitHub and GitLab offer exactly what we need, a 24/7 free service that can 

handle multiple connections efficiently (that is mostly because git itself is efficient in transmission of 

data (Walters 2012) ) and work over SSH/HTTPS to overcome potential network restrictions. 

An extra bonus is that they are very popular and offer a useful interface to work on. A lot of 

developers and many academics and students who are programming know of, or have used, at least 

one of the two SaaS providers I am considering.  

Between the two I chose GitLab because they offer free private repositories which would prove 

useful to users that do not want to disclose their cluster’s IP addresses to the public. 

The repository I have created for this project can be found on this address and easily be cloned: 

https://gitlab.com/ledakis/picluster 

The simplicity of the repository cloning using the web interface adds to the overall user experience 

and removes a fair amount of friction at the very beginning of the process. For the scripts to work, 

the user will clone and download his copy of the repository and initiate from there. 

4.4 Script injection 
This part has been the most interesting and was a steep learning curve for me because I had to learn 

Bash scripting and I had to do it as the first thing because the rest of the steps depend on this. When 

a Linux system boots, it will initiate several core subsystems and then it will start other higher level 

functions. 

4.4.1 Choice of initiation for my script 
In my research, I needed to find a way to make sure I can inject a piece of code somewhere along 

that process so that my script can then run and start the automation. I have found several ways to 

do this: 

a. Create my own service for the new system and have it start after the boot process. 

This seemed like a good approach in the beginning, but eventually I concluded that it would take a 

lot of time to learn how to properly create a system service on Debian OS. Furthermore, I still did not 

know of a method to inject the script that installs the system service to the system. A chicken/egg 

problem which was discarded from the beginning. 

https://gitlab.com/ledakis/picluster


 
Figure 3: An attempt to create a service definition file 

 

The only way to make this work would be to create my own custom images of Raspbian that have 

the service installed already; this is not one of this project’s intentions because the Raspbian 

developer team release new versions based on Debian which means it is a release cycle that updates 

every couple of months and would in effect stop updates to the users of this cluster project until I 

update my own images. 

b. Try the systemd method 

systemd is the new initiation system that (almost) every major Linux distribution uses and has 

replaced init (the old system). RedHat (2015) and DigitalOcean (2015) provide extensive 

documentation on how to add “systemd unit files” which can be programmed to be services among 

other things, but again, given the limited time allocated to this task I chose to look for an easier, 

simpler solution. 

c. Try init 

init is the old good and tried system that has worked for decades in the Unix/Linux world and still 

works in many applications. It is still being preferred among traditional Unix communities like the 

FreeBSD developers. I was inclined to use this from the beginning just because it was so simple, for a 

script to be injected in the initiation system I only need to add it to the /etc/rc.local script that runs 

last after every other init system (Raspberry Pi Foundation 2014a).  

d. Try cron 

Cron is the internal scheduler for the Unix/Linux systems and can be programmed to do anything we 

want it do. It can be told to run scripts at set times or even run after a successful reboot using the 

@reboot option (Raspberry Pi Foundation 2014b). After trying to find a way to inject the script into 

cron I found that it is extremely hard and not suggested because I would be touching files that are 

meant to be used by cron only. 

 

The choice was to go with the init approach as it was the simplest and thus the less error prone. The 

rest of them would involve additional learning that I could not afford. 

4.4.2 Implementation 
Now that I had an approach I wrote the script that needs to be injected into the rc.local file. One 

caveat of this is that any script that resides in the rc.local file needs to finish running successfully or 

the boot process will halt there. 

 



 
Figure 4: The end of the rc.local script 

 
Figure 5: The picron file 

 

As shown on figure 4 the rc.local script in order to exit properly and in time, contains a simple 

command to add the picron file into the pi user’s crontab. This was by design so we would get both 

the successful script exit and we would be utilising the very powerful cron service that I wanted to 

use as I have mentioned earlier at choice “d”. Also, after careful consideration, I added the 

conditional statement to check if picron directive is already in the crontab and skip inserting it in that 

case. This would prevent inserting the directive every time the system reboots. 

On figure 5 the single line content is shown that will be injected to the crontab. The */2 * * * * 

means it will run this command on every minute that is divisible by 2, thus every second minute. 

 

4.5 run.sh 
This is the most important file that orchestrates everything in the system. It is designed to make 

simple checks (because it runs very often) and then quit and save its parameters until next time it 

runs. 

  



As can be seen on figure 6 it begins by initiating crucial variables for the script’s logic, the 

“PI_check_master” and the “Pi_init_repo”. The check master is set to True in the beginning because 

I want the script to be checking if it is the master, until it has other evidence that it is not. This way I 

can ensure that the master check will run at least the first time the fresh system boots and then 

when it determines its master status it will turn the checking off. The “PI_conffile” file contains the 

saved environment variable from previous runs, and as shown its location is ~/.piclusterrc.  

The init repo variable is meant to let the script later to clone the repository to the system or not. 

 

 
Figure 7: conffile.sh 

 

The big if statement checks if the .piclusterrc exists and if it doesn’t it means this is the first time the 

script runs. On figure 7 is shown the conffile that is generated by the SD imaging tool and contains 

 
Figure 6: run.sh first part 



the repository address. This file becomes .piclusterrc and later on (line 29, figure 6) is loaded. In the 

condition block the rest to be done apart from the repository information, is of course the SSH keys. 

The keys are copied from the boot partition where were saved by the SD imaging tool that I am 

going to discuss later. Finally, the init repo variable is set to true as we are certain that this is a first 

run of this system. 

 
Figure 8: run.sh second part 

This is another interesting part of the run script (figure 8). It checks if the git command exists and 

runs the package manager (apt) to update and install Ansible and git which are essential, and a text 

editor. 

What follows is another check, if the repository directory does not exit, it will set the init repo 

variable again to True. I have added this after testing the system and when for some reason the 

.piclusterrc file was not written (IO problem for example) it would fail later because the repository 

was not there to run files from. This has happened a few times and after investigation it appears the 

SD cards sometimes fail to read files with the multiple partitions the Raspberry Pi uses. 

The next condition checks if the init repo variable is true and then checks if the repo is there. If it is, 

it will remove it by force and clone it again. This has been added to prevent failures in IO as 

mentioned before. 

  



 
Figure 9: run.sh third part 

Finally, the script will initiate the master checking script and set check variable to False so that it 

won’t have to run that script again. 

 

 
Figure 10: the node-master checking script 

Figure 10 shows how the master check is performed. The SD card creation tool creates an empty file 

called master into the boot partition (more about the boot partition files follows). If the file exists, it 

means this node is the master and will add the mac address inside a file called “master” in the 

repository and upload it so that it is known to others (and the user). Then it will add the special 

master crontab using the same technique that I have used for the normal node, as explained earlier. 

In a similar manner, the master cron script runs every three minutes instead of two for the simple 

node. Worth mentioning is line 19 (figure 10) where the existing crontab is concatenated with the 

new directive into one. This ensures the run.sh script will continue to run and won’t be overwritten 

by this operation. 

 

At the end of “run.sh” (figure 9) the environment variables that have been created in this script are 

saved so they can be used the next time it runs. And just before that happens the script that updates 

the IP address to the repository is run, which I will discuss next. 

  



4.6 IP update scripts 
From “run.sh” the script that initiates the IP updating mechanism is “up2git.sh”. 

 
Figure 11: up2git.sh 

The “up2git.sh” script as shown in the figure 11 updates only the remotes of the repository (to 

preserve bandwidth and reduce system load) and then updates the repository if it has changed on 

the git server. 

Then it checks if the system’s IP address is different than the one in the repository and if it is, it 

updates the repository with the new IP. The method I use to store the IPs was an attempt (after 

discussion with my supervisor) to create unique files for each IP, per system. The only thing that is 

unique and easily accessible on each machine is the Ethernet port’s mac address. So, I have used 

that as the file name of the file that contains the IP of the system. 

 
Figure 12: git_up2date_needed.sh 

Figure 12 shows the mechanism that checks for updates on the remote repository using “git rev-

parse” which returns the SHA1 of the HEAD’s commit (Chacon 2014). Because the SHA1 is a string it 

is easy to check if the two strings match and if not, force the update. 

  



 
Figure 13: ip2file.sh 

In figure 13 above is shown the script that determines if the IP address has changed. It uses the “ip” 

command which was found after trying to use a better approach than the “ifconfig” command that 

created implications when run. The “awk” language will take the piped content and remove the lines 

that don’t contain “inet” for the internet interface and will also remove the loopback address 

(127.0.0.1). 

This implementation will work even if something goes wrong and, for example, the update is 

unsuccessful. The next time the cron runs “run.sh”, the repository will be reverted to the version 

that is on the remote and then “ip2file.sh” will again identify that the IP needs to change and will 

commit and push the change. 

4.7 Master node scripts 
So far the “simple” node scripts have been explained, and by this point one can understand how 

each node will be able to communicate its address and get the rest of the addresses. Also, because 

of the way the master scripts are injected, the master node is no different than the rest apart from a 

single empty file (located in /boot/picluster/master) initially. 

4.7.1 Cron files 
As shown on figure 10, the way the master script runs is identical to the regular scripts, by utilising 

the cron service. The content of the “masterRun.sh” script is shown in figure 14. 

 
Figure 14: masterRun.sh 

This script uses a similar approach to the run.sh script, by loading the local variables file 

(~/.piclusterrc) and runs some checks before executing the Ansible playbooks. 



4.7.2 Inventory generator 
For Ansible playbooks to work, an inventory file containing the list of nodes to perform the 

commands on, is needed. This is generated by the “inv-gen.sh” script (figure 15). 

 
Figure 15: inv-gen.sh 

The “inv-gen.sh” script will initially put the master node’s IP address to the top of the inventory file 

and add it to the “master” group (which only contains itself). Then it will remove the IP file before 

concatenating all other IP files in the “ip” directory. I found this the easier and most clean way to do 

it, in order to avoid using complex regular expressions that I would need if I wanted to exclude a 

single file (Unix Stackoverflow 2015). Removing the master’s IP file is insignificant, as the next time 

the “run.sh” runs the “up2git.sh” (figure 11) it will reset the local repository back to the remote’s 

version. 

Finally, it adds a useful variable for Ansible to perform without problems (ansible_ssh_user). The 

new inventory file is saved both in the repository’s directory but also into the home directory of the 

master node to avoid being overwritten by any other change. 

 

At this point all the shell scripts that are used have been explained so I will be moving on to the 

Ansible section. 

  



4.8 Ansible 
The Ansible part was another challenging part of the project. I have spent a lot of time researching 

(Heap 2016) how it works in order to make the playbooks close to the specification. One problem I 

only found after I wrote the playbooks was that the Ansible version I was using to write playbooks on 

my computer was the current release (version 2.3) instead of the old version of Ansible that is 

available in the Raspbian repository (version 1.7). 

This led to complications as the recent release contains several notations and modules that were not 

included in v1.7 (which is dated August 2014 (Python Software Foundation 2014) ). One example of 

such feature is the “become” directive used in tasks that will use clever algorithms to become the 

super user on the node that is configured to perform administrative tasks. 

Of course, when I got notified of the error I figured that the problem was with the outdated version 

and found a solution for the 1.7 release. Instead of using “become” I used the “sudo” directive in the 

playbook that achieves the same result. 

 
Figure 16: nodes.yml 

 
Figure 17: master.yml 

The “node.yml” shown in figure 16 runs the base configuration (figure 18), installs the OpenMPI 

library with mpi4py (a library to run Python scripts written for MPI, figure 19) and then installs and 

configures the NFS client. 

Similarly, the master playbook (figure 17) runs the same roles but with NFS being different, for the 

master node it installs the NFS server and configures it accordingly. 

The roles are explained below. 

 
Figure 18: common role playbook 

 
 

 
Figure 19: OpenMPI role playbook 



The common playbook runs on all the nodes, including the master and ensures the SSH daemon is 

enabled, and then updates the package manager if the local cache is older than two hours (the value 

is in seconds) (Shah 2015). 

The OpenMPI playbook that runs on all the nodes as well, installs only the necessary packages for 

me to showcase that the OpenMPI can run. 

To achieve this, OpenMPI software needs to be installed, SSH connectivity needs to be established 

and a shared storage drive needs to be used for all the nodes to be able to get the scripts to run. So 

far OpenMPI and SSH are working with no issues and what is left to configure is the shared folder 

over the network. 

The best approach for this, I concluded, was NFS, mostly because it is straightforward to install and 

configure and is suggested by other OpenMPI tutorials as the software that should be used for such 

installations (Geerling 2015, DeConinck 2013). 

 
Figure 20: the master node NFS playbook 

When I began writing this Ansible playbook I did not know what I needed to create for an NFS setup 

to work. I have checked tutorials online and the Ubuntu documentation (Ubuntu Help 2014) but the 

most helpful resource was the FreeBSD handbook, particularly the chapter explaining NFS (Swingle 

and Rhodes n.d.). Of course, that chapter did not provide me the specific commands I needed for 

Ansible, but using my experience of Unix and the guide from the handbook I compiled a list of what 

the playbook needs to do in order to complete the setup.  

After installing the required packages, a folder needs to be created that is going to be shared, I chose 

to use the “/share” path, which makes it easy to identify from the user that runs MPI commands. 

Shown in figure 21 is the exports.j2 template that will create the necessary “/etc/exports” file which 

is required by NFS to give access to other network clients. The template is filled by a “magic” variable 

of Ansible that inserts the list of the group “nodes” specified in the inventory (Shah 2015). The 

resulting file can be seen in figure 22. This file is generated and updated every time the playbook 

runs which means that it will always be kept up to date with new nodes joining the cluster. 



 
Figure 21: exports.j2 template 

 
Figure 22: the resulting /etc/exports file 

Finally, the playbook ensures “rpcbind” and the NFS services are enabled for the system and then 

runs the “exportfs” command which updates NFS with the new information in the “/etc/exports” file 

(Kirch and Brown n.d.). 

 

 
Figure 23: the NFS client playbook 

The playbook for the NFS clients is much simpler, because it only needs to connect to the remote 

service and mount it. Again, I am using the same path for the shared folder under “/share”. The 

groups.master notation, similarly to the exports.j2 template (figure 21) inserts the single master IP 

and mounts the remote folder to “/share”. 

 

At this point all the intelligence behind the automation of the auto-configuration of the cluster has 

been explained. Figure 24 shows at a higher level how this process works. To summarise: 

The nodes get the repository from GitLab, then they update back with their IP address. 

The master gets the updated repository with the list of the IPs, and then sets them up using Ansible. 

Then the user can run MPI scripts from the master directly. 

 
Figure 24: Automation diagram 

  



4.9 Python user interface 
The final part of the development process was to create the necessary scripts that will guide the user 

to create the SD cards for the nodes. 

After significant research and deliberation with my supervisor we concluded to just make a simple 

shell interface that will work, because of time constraints. Since the project is open source I, and 

others will be contributing new features at a later time, and a graphical interface could be one of 

them. 

For the interface scripting I chose to use Python because I found Bash quite challenging and I am 

better prepared to use my existing knowledge of Python that I have gained in the University. 

Another factor to influence my decision was that Python makes it much easier to manipulate strings, 

that I am going to use in the interface as I will demonstrate next. Being an advocate of newest 

technologies I also have decided to use Python3 instead of the old Python2, which is “end of life” 

marked and should not be used in the industry anymore. The script does not have any special 

dependencies that are not already included in the standard Python3 installation. 

 

The sole purpose of the “initSD.py” script is to let the user easily create the SD cards for both the 

master and the slave nodes. The only thing that is required before running the script is for the user 

to have downloaded and extracted the Raspbian zip to their home directory and have an SD card 

plugged in their system. During the run time of the script it will wait for user input in various places, 

thus letting the user decide and take action per their needs. 

The script will first try to guess which Unix device already connected to the system that looks like a 

potential target to write to (figure 25). This usually is a device connected to a USB port and not a 

serial connection (even the included SD readers are recognised by the system as USB devices so that 

should work with no issues). The list of active mounts of (and including) the device will be displayed 

for the user to choose. A “safeoptions” mechanism has been included to prevent accidental writes to 

the main disk device thus destroying the user’s OS installation. 

 
Figure 25: Device selection 



Afterwards, the script will look into the home folder and find any files that contain “raspbian” and 

end in “.img” to be used (figure 26). A list will be displayed for the user, to choose which file they 

want to write to the SD card. This way the tool will be working with future updated versions of 

Raspbian and no hardcoded version needs to exist in the source code, making it more agile. 

 
Figure 26: Raspbian image selection 

 

The next dialog (figure 26) will display to the user what the script wants to run (the full dd 

command) along with a notice before agreeing. 

When the user accepts, the script will start the dd copy, requiring the sudo password, and take 

around five minutes, depending on the SD card writing speed (figure 27). Then when it is finished in 

order to be able to properly mount the new partitions, the system’s partition table needs to be 

reloaded, using the “blockdev” command (Maroudas 2016). 

 
Figure 27: dd process and partition reloading 

 

Following the previous process, the script copies the SSH keys from the user’s “.ssh” directory (of 

course after their confirmation) and intelligently finds the git repository URL from the current 

repository this script is running on. It displays the result for user confirmation/alteration before it 

writes the variables to the SD card. 



A final question to the user is whether the SD card is going to be used on a master node. The choice 

is as simple as a “y” or just hitting the return key. 

All the questions asked in the “initSD.py” script I have decided to add one by one, by what has been 

necessary at the time and with feedback from my supervisor on what an academic would want to 

have in such a script. Thus, I am confident I am not using an overly complex structure for this script 

(since it is just a question/action format) and more importantly, I do not tire the user. 

 

4.10 SSH to master and Documentation 
The “sshmaster.sh” script is a small single line script purposed to make the it easy for the user to 

connect to the master node as soon as it is up and running. 

By default, this contains the following command (figure 28) which, when run directly from inside the 

repository on the user’s machine can directly connect to the master server. An Asciicast example will 

be included as a link in the evaluation section. 

 
Figure 28: sshmaster.sh script 

The user can start imaging the SD cards by navigating to the “python-scripts” directory and executing 

the initSD.py script by running “python3 initSD.py”. The script will guide the user and gracefully exit 

if problems arise. 

 

The documentation on how the files work and explaining the repository structure has been written 

inside the repository’s Readme file, written in markdown. This way the whole project can be in one 

location, and can be easily organised using git. 

The markdown viewer that is included in the web interface of GitLab and GitHub further help 

present the Readme document in a much cleaner way, as can be seen in figures 29 and 30.   

 



 
Figure 29: Readme, part 1 

 
Figure 30: Readme, part 2 

  



5. Evaluation - Results 
To evaluate this project, we need to consider the original research question. The title of this report 

is: 

“An Ansible implementation of a self-configuring Beowulf cluster of Raspberry Pis in a localised 

environment for the purpose of distributed computing using Open MPI” 

So, the research question is, as defined in the beginning, if we can create a set of tools that will 

enable any number of Raspberry Pis to automatically configure using Ansible and successfully set 

themselves up for OpenMPI usage. 

5.1 Deliverables 
After completing the development and testing phase of this project I can acknowledge that this goal 

has been achieved. To elaborate, I will go over the list of deliverables defined after the literature 

review and in the beginning of the method chapter (section 4.1 Project deliverables). 

a. Network independency 

One of the important deliverables of this project was that the cluster had to be network agnostic, 

meaning that it should be able to self-configure regardless of the network.  

As I have explained in the 4.6 chapter, the IP update scripts will have nothing to do with the network 

stack of the system, but only get the current IP address and share it over git. So, as long as any other 

system on the same network (desktops, laptops, smartphones) can get an IP address through DHCP, 

so can the Raspberry Pis. The IP then will be updated with the repository and shared to the rest of 

the cluster. In addition, if the network also allows direct connections using IP address (like SSH 

connection) then the cluster will have no problem configuring, as it is only using SSH protocols to 

communicate to git and between the nodes. 

b. Unattended setup 

This was delivered as well by the project. The scripts described in sections from system start-up 

injection to bash updating repositories and IP addresses through cron, and even the higher-level 

configuration being done by Ansible, all converge to a truly unattended setup. The user only has to 

prepare the devices physically (plug in the SD card, the power adapter and the Ethernet cable), 

which of course is unavoidable. The rest is being done automatically. 

c. Little input from the user 

This deliverable asked for as little input from the user as possible in the initial stage of creating the 

SD card. This, as well has been met, as the user only answers simple questions, like which device 

contains the SD card, which image to write to it and if the SD card is destined to a master node. The 

rest of the questions can be skipped with an enter as they have default values hardcoded, or 

guessed intelligently as shown in the 4.9 Python chapter. 

d. Easy access to the master 

This, although an easy task, is one of the most useful deliverables as it lets the user quickly and with 

no frustration connect to the master node. As shown in the last (4.10) section of the methodology 

and as I have recorded in an Asciicast later this has been implemented and is as easy as running a 

single script, “sshmaster.sh”. All the SSH keys are already there on all nodes (including the master) 

and the connection is seamless and with no errors. 



e. Documentation 

Documentation has been written in the front of the web interface of the git repository on GitLab in 

form of a Markdown document called Readme. This serves the double purpose of being very visible 

(as it is the first thing displayed in the repository) and being easy to edit and update by being a 

simple and elegant mark-up language. 

 

5.2 Demonstration 
The previous discussion has argued that the deliverables have been met. To demonstrate this I also 

have recorded two “Asciicasts” which, as explained in the 2. Term definitions, are a variation of 

screencasts but displaying only the presenter’s shell, making them an excellent choice for the task. 

The following URL points to the Asciicast that demonstrates how the user can create a new SD card 

using the Python tool: 

https://asciinema.org/a/5zn8w9c3p4pdffc86co86kfx8 

 

After the user creates the necessary node SD cards and the single master SD card using the Python 

script demonstrated above, then they will turn the devices on and let them auto-configure. The 

process does take at least 6 minutes depending on the Internet bandwidth of the network as all the 

nodes when booted start to download the updated package repository list and install Ansible, git 

and vim as explained in 4.5 run.sh section. 

During this time, of course, the user can be watching how the git repository changes as the updates 

will be regular commits there. When the master has submitted the master commit, the user will be 

able to connect to it and start using the cluster (even if not all nodes are active yet). 

 

The following URL points to the Asciicast that shows how the user can easily connect to the master 

node and run OpenMPI commands successfully. In the demonstration, I have used a python script 

that prints “hello world” from each node in the cluster. 

https://asciinema.org/a/4liwwumq4trab65091w3thxtk 

 

 

 

  

https://asciinema.org/a/5zn8w9c3p4pdffc86co86kfx8
https://asciinema.org/a/4liwwumq4trab65091w3thxtk


6. Project management 
In order to efficiently develop the required software for this project I initially planned the 14 weeks I 

had available in a simple way as I have demonstrated in the project proposal (Appendix 11.1). In the 

proposal, I planned each step of the process that I had envisioned then in its small-compact time 

slot, more like how an agile team using the Scrum framework would have worked. The project was 

split into small sprints and after each cycle I would mark the task off the product backlog and 

continue to the next in line. 

Since I was working alone and not as part of a team, my focus was at the current sprint and not the 

previous or next ones, making the process as clean as possible and requiring a certain amount of 

dependencies met before I could proceed to the next step. Based on the initial plan I had also 

created a simple Gantt chart (figure 31) that shows exactly how each task does not overlap with 

others (apart from 2-3 occasions that the tasks would be easy to do at the same time, like the test fix 

and documenting near the end of the timeline). 

Figure 31: Initial Gantt chart 

 

The initial plan albeit being thorough, did not include difficulties encountered over time. It appears I 

have underestimated the time it would take to learn about the Ansible and the testing of the Python 

script. These tasks required considerable more time than allotted and as a result I had to use the 

“time for setbacks” period to fix them. 

Over the final weeks and after the presentation meeting with my supervisor I have tried to follow his 

instructions to focus mostly on the cluster working rather than too complicated and specialised 

parts, such as a better interface or an additional zeroconf method of configuring. 

After the presentation meeting I took the chance to view the project from a different perspective in 

order to find how I would prioritise best (a list of handwritten notes I took while discussing with the 

supervisor after the presentation can be found in the Appendix’s handwritten notes section 11.4 

figure 2). From the 302CEM module I was introduced to the MoSCoW model (Rasmusson 2010) of 

prioritising tasks and managed to adjust the rest of the tasks to it. 

3

3

3

3

3

3

3

3

3

3

6

3

12

14

0 10 20 30 40 50 60 70

Hardware gathering

Git related scripts

SSH key model

Initial Ansible playbook

Test 1

Test 1 fixes

Test 2

Test 2 fixes

Ansible playbook for openmpi

Test 3

Test 3 fix

Documentation

Time for setbacks

Presentation/Final report writing

Duration vs Days since beginning of project



7. Discussion 
 

This project began as a question in the university’s computer club: “Why can’t we use all the 

Raspberry Pis we have to demonstrate clusters to students?” 

That was an intriguing question that led me to discuss with my supervisor ways I could accomplish it. 

Soon the conclusion was made, that we would not be able to auto discover the nodes because of the 

university’s network restrictions. Eventually, this led me asking my supervisor if I could research and 

implement a way to make this possible.  

By the end of this module I am be happy to announce that the project was a success and the 

university will be able to use the Raspberry Pis we have available to demonstrate easily with no 

special attention a cluster of Linux machines running MPI software. 

Although everything seems well and good, the project did have a small number of setbacks that led 

to re-organising priorities and plans and deciding which feature wouldn’t be implemented after all. 

Of course, being a supporter of the open source ideology that was not a problem, as the project will 

be shared publicly and everyone will be contributing in the future, including me. 

One of the things that are not included in the current version of the code is the lack of an one-line 

unattended SD card imaging program. While, as demonstrated, it is a fairly easy process to create 

the cards, I would like to add in the future the option to run the “initSD.py” script with a number of 

arguments that will automatically start doing the work instead of asking the user for information. 

After all, this tool could be used by technical people that would prefer to input the information 

before the script even starts. 

Another thing that I wish I had more time to implement is a better user interface. I initially planned 

for a “curses” like interface but that part alone would cost several weeks of trial and error and 

problematic attempts. Again, this is added in the To-do list for the project in the future. 

For the time being the Python script has been tested against Linux systems, specifically Ubuntu ones. 

I am confident that it will work with Fedora as well, but since I do not personally own a macOS 

device yet, I won’t be able to develop for that efficiently, and will rely on other people’s bug 

submissions or even fixes. I do not plan to develop on Windows for the time being because of the 

lack of a Unix shell, or until I learn PowerShell like I do Bash. 

As described this project relies on the SaaS git provider GitLab. For larger installations, the number 

of requests sent to their service will scale in a proportional manner, and that might become a 

problem for the provider. I have not yet hit that limit with six devices running and requesting git 

updates every two minutes amounting up to 180 requests per hour (6 nodes times 30 runs per 

hour). 

For each node added in the cluster one can expect 30 more requests per hour, which can easily scale 

since the very purpose of this project is to provide for an easily scalable cluster. To overcome this 

problem a user can host their own repository or use the university’s own GitHub server 

(github.coventry.ac.uk). 

Another limitation of this project this far is the fact that Ansible runs every three minutes on the 

master. I would like to make it run only once or twice so that it will be more efficient. To overcome 

overlapping problems if one Ansible is not finished in the three-minute window, I have added a 



check on the masterRun.sh script to check if the process “ansible” is running and continue only if it is 

not. 

 

8. Reflection on ethics 
 

8.1 Social aspect 
As I have mentioned earlier, the target audience for this project is academics in higher education 

that want to use clusters running MPI software to demonstrate distributed programming to 

students. More specifically, Coventry University was the main target so that the project would be 

used in the parallel programming module taught to final year students. This project does not 

interfere with other networks and as such cannot be considered harmful to anyone, but instead is 

promoting education by making teaching materials (for example a cluster) easier to set up. 

The project is based on open source software, a community effort and thus I would not feel morally 

intact if I did not give it back freely and openly so that others may benefit from it. 

 

8.2 Legal aspect/Licencing 
As already clarified, the project makes use of open source libraries, programming languages and 

operating systems. It is meant to work with such software and takes advantage of the openness of 

said products. 

Although I could skip the part of choosing a licence for the project’s code, that would make the work 

copyrighted, non-free and not available to usage without my prior consent, as has been pointed out 

by Richard Stallman (2015). 

Furthermore, I am not bound by the licences for the software that my scripts use, because I am not 

using any of their code in my own work. I am merely running scripts on systems that use other open 

source software. This gives me the right to choose my own licence at this point. 

Because I did not want the users of my scripts to be bound by any open source licence I chose to use 

the “Unlicence” aiming to rid the work from any restriction and obligation (Unlicence.org n.d.). 

 

8.3. Ethics 
I could not find any fault on the ethical aspect for this project since it does not involve personal 

information of any kind, it does not try to hack computers and does nothing that is not already 

shown in the public repository that the user can load and inspect. 

  



9. Conclusion 
 

In this project, I have demonstrated how I created a set of tools that work together to enable the 

user to set up and configure an OpenMPI cluster of Raspberry Pis using Ansible and git with 

minimum intervention. 

The evaluation of this project returned positive results that the cluster starts to configure promptly 

and automatically when the devices are powered on and connected to the internet. The set-up time 

varies depending on the network bandwidth but usually is in the timeframe of 6 - 10 minutes for 

each Raspberry Pi connected. 

 

  



10. Bibliography 
 

Bahyl, V., Chardi, B., Van Eldik, J., Fuchs, U., Kleinwort, T., Murth, M., and Smith Cern, T. (2003) 
Installing, Running and Maintaining Large Linux Clusters at CERN. [online] available from 
<https://arxiv.org/pdf/cs/0306058.pdf> [30 April 2017] 

Becker, D.J., Sterling, T., Savarese, D., Dorband, J.E., Ranawake, U.A., and Packer, C. V. (1995) 
BEOWULF: A PARALLEL WORKSTATION FOR SCIENTIFIC COMPUTATION [online] available from 
<http://www.phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/ICPP95/icpp95.html> 
[30 April 2017] 

Broberg, R. (2012) OpenMPI on Raspberry Pi [online] available from 
<https://rhinohide.wordpress.com/2012/02/26/openmpi-on-raspberry-pi/> [30 April 2017] 

CERN (2012) The Grid: Software, Middleware, Hardware. [online] available from 
<https://cds.cern.ch/record/1997392> 

Chacon, S. (2014) Pro Git. Berkeley, CA New York, NY: Apress,Distributed to the Book trade 
worldwide by Spring Science+Business Media 

Cox, S.J., Cox, J.T., Boardman, R.P., Johnston, S.J., Scott, M., and O’Brien, N.S. (2014) ‘Iridis-Pi: A Low-
Cost, Compact Demonstration Cluster’. Cluster Computing [online] 17 (2), 349–358. available 
from <http://dx.doi.org/10.1007/s10586-013-0282-7> 

DeConinck, A. (2013) Ansible Scripts for My Raspberry Pi Cluster [online] available from 
<https://github.com/ajdecon/ansible-pi-cluster> [30 April 2017] 

DigitalOcean (2015) Understanding Systemd Units and Unit Files | DigitalOcean [online] available 
from <https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-
unit-files> [1 May 2017] 

Gardner, G. (2014) Mini-Itx Cluster [online] available from <http://www.mini-
itx.com/projects/cluster/> [30 April 2017] 

Geerling, J. (2015) Raspberry Pi Dramble [online] available from 
<https://github.com/geerlingguy/raspberry-pi-dramble> 

Gropp, W., Lusk, E., and Sterling, T. (2003) Beowulf Cluster Computing with Linux. 2nd edn. 
Cambridge, Mass: MIT Press 

Heap, M. (2016) ‘Appendix A. Installing Ansible’. in Ansible: From Beginner to Pro [online] Berkeley, 
CA: Apress, 159–162. available from <http://dx.doi.org/10.1007/978-1-4842-1659-0_10> 

Kiepert, J. (2013) Creating a Raspberry Pi-Based Beowulf Cluster. [online] available from 
<http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-
Based.Beowulf.Cluster_v2.pdf> [30 April 2017] 

Kirch, O. and Brown, N. (n.d.) exportfs(8) - Linux Man Page [online] available from 
<https://linux.die.net/man/8/exportfs> [1 May 2017] 

Maroudas, E. (2016) #825340 - Sfdisk: Invalid Option -- ‘R’ on Restoredisk Mode - Debian Bug Report 
Logs [online] available from <https://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=825340;msg=2> [30 April 2017] 

NSF (2005) $150 Million TeraGrid Award Heralds New Era for Scientific Computing | NSF - National 
Science Foundation [online] available from 



<https://www.nsf.gov/news/news_summ.jsp?cntn_id=104248> [30 April 2017] 

Nvidia and DeConinck, A. (2013) How One NVIDIAN Built a Tiny Server Cluster Out of a Slice of 
Raspberry Pi | The Official NVIDIA Blog [online] available from 
<https://blogs.nvidia.com/blog/2013/07/17/raspberry-pi/> [30 April 2017] 

Python Software Foundation (2014) Ansible 1.7 : Python Package Index [online] available from 
<https://pypi.python.org/pypi/ansible/1.7> [1 May 2017] 

Rasmusson, J. (2010) The Agile Samurai : How Agile Masters Deliver Great Software. Raleigh, North 
Carolina: The Pragmatic Bookshelf 

Raspberry Pi Foundation (2014a) Rc.local - Raspberry Pi Documentation [online] available from 
<https://www.raspberrypi.org/documentation/linux/usage/rc-local.md> [1 May 2017] 

Raspberry Pi Foundation (2014b) Scheduling Tasks with Cron - Raspberry Pi Documentation [online] 
available from <https://www.raspberrypi.org/documentation/linux/usage/cron.md> [1 May 
2017] 

RedHat (2015) Creating and Modifying Systemd Unit Files [online] available from 
<https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-
Managing_Services_with_systemd-Unit_Files.html#tabl-Managing_Services_with_systemd-
Service_Sec_Options> [1 May 2017] 

Shah, G. (2015) Ansible Playbook Essentials. Birmingham: Packt Publishing 

Stallman, R. (2015) Re: Please, No GitHub [online] available from 
<https://lists.gnu.org/archive/html/discuss-gnustep/2015-12/msg00182.html> [2 May 2017] 

Stephenson, J. (2005) The Humidor Cluster [online] available from 
<http://slipperyskip.com/page10.html> [30 April 2017] 

Sterling, T. (2002) Beowulf Cluster Computing with Linux. Cambridge, Mass: MIT Press 

Swingle, B. and Rhodes, T. (n.d.) Network File System [online] available from 
<https://www.freebsd.org/doc/handbook/network-nfs.html> [29 April 2017] 

Ubuntu Help (2014) Network File System (NFS) [online] available from 
<https://help.ubuntu.com/14.04/serverguide/network-file-system.html> [1 May 2017] 

Unix Stackoverflow (2015) Text Processing - Cat Files except One - Unix & Linux Stack Exchange 
[online] available from <https://unix.stackexchange.com/questions/246048/cat-files-except-
one> [1 May 2017] 

Unlicence.org (n.d.) Unlicense.org » Unlicense Yourself: Set Your Code Free [online] available from 
<https://unlicense.org/> [2 May 2017] 

Walters, C. (2012) Efficiency of Git versus Tarballs for Source Code Transmission and Storage over 
Time | Colin Walters [online] available from <https://blog.verbum.org/2012/06/08/efficiency-
of-git-versus-tarballs-for-source-code-transmission-and-storage-over-time/> [30 April 2017] 

 

  



11. Appendix 

11.1 Project Proposal 

 

  



 

  



 

  



 

 

  



11.2 Meeting diary 

2nd of February 2017 

Supervisor:  Dr. Carey Pridgeon 
 
Student: ______Theocharis Ledakis______________________ 
 
Date of meeting: __________02 Feb 2016________________________ 
 
 
 

Key topics Discussed: 
 

 Proposal question reviewed 

 Discussed the implementation method 

 Discussed deliverables  

 Clarified one of the terms used in the proposal (distributed vs parallel computing) 

 Agreed on the project title and implementation plan structure 
 
 
 

Individual action points for next meeting (no more than 3): 
 
 

 Finish proposal and deliver 

 Submit ethics form 

 Meet and get the hardware needed (Raspberry Pis) from Carey's office 
 

 

  



9th of February 2017 

Supervisor:  Dr. Carey Pridgeon 
 
Student: ______Theocharis Ledakis______________________ 
 
Date of meeting: __________09 Feb 2016________________________ 
 
 
 

Key topics Discussed: 
 

 Project progress catch-up 

 Discussed about the repository I will be using, it will be GitLab 

 Talked about the networking and how many I will be using this at the beginning 
 
 
 

Individual action points for next meeting (no more than 3): 
 
 

 Complete ethics form 

 Start working on the framework of my literature review 

 Have something working next week 
 
 
 
 
 

Record of individual actions completed + notes: 
 
Regarding the literature review: 

 Things that inspired the project for lit review. 

 Not just specifically about the project. 

 Break into subject areas. 
 
Check into 'ganglia' software to be added to the Raspberry Pi images. 
 
 
Date of next meeting: 16 Feb 2019 
 



Acknowledgement from Supervisor 

 

  



16th of February 2017 

Supervisor:  Dr. Carey Pridgeon 
 
Student: ______Theocharis Ledakis______________________ 
 
Date of meeting: __________16 Feb 2016________________________ 
 
 
 

Key topics Discussed: 
 

 Project progress catch-up 

 Reviewed ethics form 

 Talked about ways to identify the individual Raspberry Pis on the cluster 
 
 
 

Individual action points for next meeting (no more than 3): 
 
 

 Do work as agreed on the proposal for the individual weeks’ timetable 

 Start working on the literature review 
 
 
 
 
 

Record of individual actions completed + notes: 
 
As a second way of identifying the Raspberry Pis on the cluster, the status and power LEDs on 
them could be used to blink and show the numeric ID in a binary format. Try to design a plan for 
this. 
 
Date of next meeting: 23 Feb 2019 
 



Acknowledgement from Supervisor 

 

  



24th of February 2017 

Supervisor:  Dr. Carey Pridgeon 
 
Student: ______Theocharis Ledakis______________________ 
 
Date of meeting: __________24 Feb 2016________________________ 
 
 
 

Key topics Discussed: 
 

 Introduction to Prof. Chao 

 Key points for next meeting 

 Discussions on initial work plan 
 
 
 

Individual action points for next meeting (no more than 3): 
 
 

 Do more work on the literature review 

 Begin working on the dissertation report's structure 

 
 
 
 
 

Record of individual actions completed + notes: 
 
Prof. Chao might have some useful information for the development of this project. 
 
Date of next meeting: 2 March 2017 
 

 

  



Acknowledgement from Supervisor 

 

 

 

  



2nd of March 2017 

Supervisor:  Dr. Carey Pridgeon 
 
Student: ______Theocharis Ledakis______________________ 
 
Date of meeting: __________2 Mar 2016________________________ 
 
 
 

Key topics Discussed: 
 

 Discussed project progress 

 Plan to add more work to the report  
 
 
 

Individual action points for next meeting (no more than 3): 
 
 

 Do more work on the literature review 

 
 
 
 
 

Record of individual actions completed + notes: 
 
 
 
Date of next meeting: 9 March 2017 
 

 

  



Acknowledgement from Supervisor 

 

  



9th of March 2017 

Supervisor:  Dr. Carey Pridgeon 
 
Student: ______Theocharis Ledakis______________________ 
 
Date of meeting: __________9 Mar 2016________________________ 
 
 
 

Key topics Discussed: 
 

 Discussed project progress 

 Literature review points 
 
 
 

Individual action points for next meeting (no more than 3): 
 
 

 Progress on the report structure 

 
 
 
 

Record of individual actions completed + notes: 
Literature review, discuss about: 

 How it helps academics, teachers in their work 

 Comparison of puppet VS Ansible 

 Educational benefits of the hands-on approach: 
o Benefits of deep learning VS surface learning 
o Beneficial to younger pupils to be exposed to distributed algorithmic 

thinking 

 Identify the need for the project to create an easy to use tool to deploy the SD 
cards. 

 
 
Date of next meeting: 16 March 2017 
 

 

  



Acknowledgement from Supervisor 

 

  



16th of March 2017 

Supervisor:  Dr. Carey Pridgeon 
 
Student: ______Theocharis Ledakis______________________ 
 
Date of meeting: __________16 Mar 2016________________________ 
 
 
 

Key topics Discussed: 
 

 Project presentation 

 Choice of Ansible as the main automation tool 
 
 
 

Individual action points for next meeting (no more than 3): 
 
 

 Progress on Ansible playbooks 

 
 

Record of individual actions completed + notes: 
 

 
 
Date of next meeting: 23 March 2017 
 

 

Acknowledgement from Supervisor 

 

  



24th of March 2017 

Supervisor:  Dr. Carey Pridgeon 
 
Student: ______Theocharis Ledakis______________________ 
 
Date of meeting: __________24 Mar 2016________________________ 
 
 
 

Key topics Discussed: 
 

 What is going to be required from for the final report 

 Key presentation points for next week 

 Talked about the second supervisor 
 
 
 

Individual action points for next meeting (no more than 3): 
 
 

 Have the structure of the final report ready to showcase? 

 Be able to showcase the project working on Raspberry Pis 

 
 
 
 

Record of individual actions completed + notes: 
 Detailed discussion about the delivery of project and how it is going to progress 

after graduation 

 Talk about failure scenarios (if for example the master dies) and recoverability of 
the cluster 

 
 
Date of next meeting: 30 March 2017 
 

 

  



Acknowledgement from Supervisor 

 

 

  



11.3 Presentation material 
The presentation on the 30th of March 2017 to my supervisor was a short demonstration of the code 

I have had prepared then (the bash scripts to automate the IP updating) and the Ansible playbooks 

mostly due to the nature of the project being technical. 

This was discussed in the last meeting before the presentation on the 24th of March as is shown on 

the diary section above this. 

Evidence of the technical demonstration of me running the cluster software can be seen in the 

commit logs of the repository that day. Specifically, after the commit with hash 

9117594d002d3f3e99b1ad54371d33adc6ee0a8b that can be found in the following list of commits: 

https://gitlab.com/ledakis/picluster/commits/master 

(the individual commit can be found at: 

https://gitlab.com/ledakis/picluster/commit/9117594d002d3f3e99b1ad54371d33adc6ee0a8b ) 

It can be seen, that the next commits, at the time of the presentation meeting, were made by my 

scripts as I was showing the supervisor the way the IP updating scripts work.  

The following figures in addition to the URL I have provided above provide evidence for the 

presentation that took place on the 30th of March with me and the supervisor. 

 
 

The last commit before the meeting while I was waiting my turn with Supervisor. 
 

https://gitlab.com/ledakis/picluster/commits/master
https://gitlab.com/ledakis/picluster/commit/9117594d002d3f3e99b1ad54371d33adc6ee0a8b


 
 

The next commit was by the automation tool that auto-commited when I demonstrated the IP 
updating scripts to my supervisor. 

 
 

 

  



The feedback I received from my supervisor after our meeting is shown in the following figure. 

 
Figure: feedback email received from supervisor after the presentation meeting 

 
 

  



11.4 Handwritten notes/Diary 

 
 

Figure 1 

  



 
Figure 2: Feedback I have written down while discussing with supervisor after the presentation regarding on whether to 

ship a Raspbian image or let the Python script do it. 

  



 
Figure 3 

  



 
Figure 4 

  



 
Figure 5 

  



 
Figure 6 

  



 
Figure 7 


