2 May 2017

An Ansible implementation of a self-
configuring Beowulf cluster of Raspberry
Pis in a localised environment for the
purpose of distributed computing using
Open MPI

Theocharis Ledakis
Student ID: 5717206

Supervisor: Dr Carey Pridgeon

Course: BSc Computing (Honours) with Industrial Placement

School of Computing, Engineering and Mathematics, Coventry
University

Project repository:

https://gitlab.com/ledakis/picluster

Departmentof Computing

COVENTRY UNIVERSITY

300COM / 303COM Declaration of originality

| Declare that This project is all my own work and has not been copied in part or in whole
from any other source except where duly acknowledged. As such, all use of previously
published work (from books, journals, magazines, internet etc.) has been acknowledged by
citation within the main report to an item in the References or Bibliography lists. | also agree
that an electronic copy of this project may be stored and used for the purposes of plagiarism
prevention and detection.

Statement of copyright

| acknowledge that the copyright of this project report, and any product developed as part
of the project, belong to Coventry University. Support, including funding, is available to
commercialise products and services developed by staff and students. Any revenue that is
generated is split with the inventor/s of the product or service. For further information
please see www.coventry.ac.uk/ipr or contact ipr@coventry.ac.uk.

Statement of ethical engagement

| declare that a proposal for this project has been submitted to the Coventry University
ethics monitoring website (https://ethics.coventry.ac.uk/) and that the application number
is listed below (Note: Projects without an ethical application number will be rejected for
marking)

Signed: / Date:
20 Mpiil %01t

Please complete all fields.

First Name:
Theocharis
Last Name:
Ledakis
Student ID number
5717206
Ethics Application Number
P47560
1% Supervisor Name
Dr. Carey Pridgeon
2" Supervisor Name
Prof. Kuo-Ming Chao

This form must be completed, scanned and included with your project submission to Turnitin. Failure to append these
declarations may result in your project being rejected for marking.

Covent
Unlversw

Certificate of Ethical Approval

Applicant:
Theocharis Ledakis

Project Title:

An Ansible implementation of a self-configuring Beowulf cluster of Raspberry Pisin a
localised environment for the purpose of distributed computing using Open MPL

This is to certify that the above named applicant has completed the Coventry
University Ethical Approval process and their project has been confirmed and
approved as Low Risk

Date of approval:
16 February 2017

Project Reference Number:
P47560

Table of Contents

I Y o1 d T PPV P PP POPPTOURRUPROINS 6
D, ACKNOWIEAZEMENTS.eiiiiiiiie ettt e e st e e e s bt e e e e sabaeeesnbaeeesansaeeesansaeeesnnsseeennn 6
I (g1 4 oo [¥ T 4 o Yo W T T T PSPPSR 7
2. Tl defiNITIONS ...eeeieeeee ettt st sttt e b e she e st sane s e b nes 8
3. LItEratUre MEVIEW ...ciiiiiiiii ittt b e s a e s be e s saba e e s s arae s 9
I/ [oo [F Tt o Yo HA OO PUPRTOUPPOTR 9
@] o ol 01y =Y R =Y o PPN 9
3.3 Recent approaches to cluster systems with cheap components.........cccccccvveeieciiieeicciiee e 9
I T0 =T o] o= - ol [=] PP 9
RIS B [o 12 o IO PO P IO PPTOPPTRPRRTRR 10
IR TR 2 1 T T o PPR 10
3.3.4 DECONINCK CIUSEET ..eiieiiiiiieeiee ettt ettt e s e st e e sb e e s bt e e sabe e snteesabeeenne 11
335 Pi DramMbIe. . ettt st et b e sae e et eetean 12

B CONCIUSION .ttt s bttt ettt e e bt e s bt e s ae e saeesabe e b e e bt e nbeesmeesneeeaeeentean 12
|V =1 d o To o [T O PO TP PP PROR PP TOTOPPPROPPTO 13
o o o =Yoo (=Y V=T] o 1= SRR 13
4.1.1 Network iNdEPENUENT........viii ittt e e e st e e e sbte e e e sbteeeesbeaeeesanes 13
o A U1 P o =T T L= IEY=Y U o SRR 13
4.1.3 INPUt Will D HMIEEA ..vveiiieiieee ettt e e e tte e e e et e e e s ebre e e e enraeaesanes 13
4.1.4 Easy aCCESS t0 the MASTeI ...eiiiiiiiii ittt e et e e e sbte e e e e baaeeesanes 13
4.1.5 DOCUMENTALION ..eoviiiiiiiiiiiiiiiic e 13

L V= g Voo o] [=4V AR 13
A3 WHY Gttt b e b e a e st et b e e bt e e bt e e bt e e a e e et e e bt e beeeheenat e et e eabe e beenns 14
Y of]) A [Y =T T] o EP Nt 14
4.4.1 Choice of initiation for My SCriPt. ... 14
A Ve Y o] (=T g Tt o =Y o o T PP URROt 15

B.5 TUNLSN ettt et e et e e st e r e e s b e e e be e e s be e e re e e neeesarenesareean 16

L SR LU oY T I T o U PPURRRNE 20

E oy Y - 1 €= gl g Yo Yo LIy of] o] U PPURRRNE 21
0 R O o o I {1 =TT PSP P PPN 21
o A L V=T o) o] AV =T o 1<) - | £] SO PP PPPPPPPPPPTPRE 22

B Y g T o =T PP U RO PU PRI 23

F e oV o o T WV I = a0 =] = Yol <SRRI 26
4.10 SSH to master and DOCUMENTATION.cccueeriieiierieiie ettt ettt 28

I AV Y [V L oY R s (=T | 30

LI A B T 1 VZ<T =] o] (=TT RTURRR 30

OB 1=T0 Lo T 131 = [o PP P PSPPI 31
(S e do) [=e A g Lo T=d=T 0 0 1] | S T TP T TP 32
7 DISCUSSION...etiiii ittt ittt et s e e e s s e e e s s et e s s a e e s s a e e s a e e s era s 33
8. ReflECtioN ON ETHICS.....oiiiieeee ettt sabe e s e bt e e saree s 34

N Yo Toi] I 1 o 1T o USRS 34

8.2 Legal aSPECE/LICENCING ...ecccveieciee ettt et ettt ete e et eeete e e ete e e taeeebeeeetbeesabeeebeeesareesnraeensseesseeanns 34

8.3 ELNICS ottt b e h e s st sttt e b e b e b sre e eaeeenteen 34
R 6] o Tol [V o T o DO TSP O TSP SRR PP 35
O TR = 11 o] [T = =T o] o VAU 36
I Y o Yo 1T o [USSR 38

3 0 I 2 o Y=Yt o CoT o To LY | SR 38

V1Y i = [T oY USRS 42

11.3 Presentation Materialoo ot s 56

11.4 HANAWITEEN NOLES/DIAIY ..ccuvecuiieieeieeiteeeteestee ettt eteerteesteesteestaeeebeeabeebeesbaestaessbeesbeebeesteesssasaneens 59

a. Abstract

Although there are projects that combine Ansible with Raspberry Pis, or OpenMPI with Raspberry
Pis, there is none to combine the benefits of all those software technologies to automate the
deployment of any number of Raspberry Pis with minimum intervention from the user in order to
run OpenMPI projects.

This project’s aim is to accomplish that and provide a complete package that can be used with little
intervention from the end user. The completed project is making use of git and the Bash scripting
language to initially establish a method of announcing the nodes’ IP addresses to a central location,
Ansible to configure at a higher level the swarm from a master node, and Python for the front-end
tool that lets the user configure the few parameters needed for the swarm to operate and create the
SD card images. Finally, OpenMPI is installed along with an NFS server and NFS clients for the nodes
to communicate files. This implementation does not try to initialise the cluster using zeroconf
techniques, due to restrictions on Coventry University’s network.

The final code has been tested in a small environment of 3-6 Raspberry Pis and is working as
expected. The project is also released as an open source repository on the following address:
https://gitlab.com/ledakis/picluster

The repository can be cloned and used directly to run the project from the user’s account.

Keywords:
- MPI
- Raspberry Pi
- Ansible
- Automation
- Beowulf cluster
- Distributed computing

b. Acknowledgements

| would like to thank my supervisor Dr Carey Pridgeon for the continuous help and insights to the
guestions and problems | have had during this project, as well as sponsoring my trip to a developer
conference and for providing the hardware, Raspberry Pis and power supplies. The completion of
the problem could not have happened without the support of my good friend Manolis Kiagias in
some highly technical matters.

Finally, | am grateful to the open source community that has produced such high-quality software,
namely Linux, Debian, OpenMPI, Ansible, Raspbian, SSH, Python, Bash and others. | hope the
resulting code of this project is going to be used by the community and cherished.

https://gitlab.com/ledakis/picluster

1. Introduction

The research question for this paper as explained in the Detailed proposal (Appendix 11.1) is:

How could the process of deploying a Raspberry Pi cluster in a local network be automated in order
to achieve minimal configuration from the user?

The purpose of this project is to offer a set of tools that can easily and with little configuration and
attention from the user, configure a cluster of Raspberry Pis using open source software and aiming
to be modular, by using the Ansible automation framework.

Specifically, | will discuss ways and methodologies to manipulate the initialisation scripts of the
Raspbian OS so that the nodes can start organising into a cluster, scripting of the automation of git
updates back to GitLab and, as mentioned, creation of the necessary Ansible playbooks that
continue from where the bash scripts finish and install and configure any software the user requires.
For this project OpenMPI and NFS will be demonstrated, but because of the modular nature of
Ansible many more tools can be added on the fly.

A potential reader of this report needs to have basic shell/bash scripting experience along with some
knowledge of how Linux systems work, and an understanding of clusters and basic networking.
OpenMPl is only used as the final example of the working cluster, so experience with this is valuable
only to run the final product and program with a distributed set of runners in mind.

2. Term definitions
A list of definitions that are going to be used throughout this report.

- Raspberry Pi
A single board computer that was developed by the Raspberry Pi Foundation to be

used in education in 2012. Since then, because of its low price (about £24) it has
been used in many hobby projects in the community and has been a complete
success. Two more versions with upgraded specs have been released to succeed the
original.

- MPl and OpenMPI
Message Passing Interface is a system designed to enable programmers to create
programs that can run on a distributed environment, like a cluster.

- Beowulf
Beowulf cluster is a cluster consisting of identical nodes, usually old commodity
hardware.

- NFS
Network File Storage

- 05
Operating System

- Ansible Galaxy
A portal with collections of Ansible playbooks, made by the community.

- Playbook
The Ansible playbook is a set of scripts made in YaML format that are run by Ansible
to achieve a variation of tasks, from administrative to scripting.

- Bash
The default shell for Unix systems. An extension to the original Bourne Shell, now
called “Bourne Again SHell”.

- Asciicast
A screencast, not with video but with the shell. This tool records the terminal session
and can replay the STDIN/STDOUT to viewers, which makes an excellent tool to
demonstrate shell software.

- dd
A Unix command that is a short, and a play of cc (Carbon Copy). It copies the origin
to the destination as an exact copy because it copies in a lower level. Because of
that, to use it for accessing system devices such as disks, super user privileges are
required.

3. Literature review

3.1 Introduction

In this section | will discuss what other findings have led to forming my research question. The
research on literature will begin by older cluster examples used in the industry and academia and
then focus on smaller teams with less budget that achieve the same effect by using the Beowulf
approach. Finally, | will explain how the current literature offers solutions that offer either
automation but no integration with MPI or just MPI clusters that have to be setup manually.

3.2 Old cluster systems

Computer clusters is not a recent computing development, but instead it has been developed and
utilised for many decades. There has been a plethora of big cluster systems used mostly by the
military, but most importantly by universities and large tech companies. Good examples of such
systems are the computing system of CERN (Bahyl et al. 2003, CERN 2012), the National Science
Foundation’s “TeraGrid” (NSF 2005), large supercomputers like the IBM Watson or smaller Beowulf
deployments as the “Chiba City” or “Jazz”, 256-node and 350-node respectively clusters at the
Argonne National Laboratory (Gropp et al. 2003). Such systems are used mainly in research because
they offer a cost effective solution to problems that require high performance and fault tolerance
according to Sterling (2002).

Academics (Becker et al. 1995), small companies (Gardner 2014) and individuals (Stephenson 2005)
have as well created clusters with a handful of nodes that were based on cheap hardware and used
open source software to run. In 1995 and 2004 the software that Becker (1995) and Gardner (2004)
used was very much like the ones that are in use today, an open source operating system (FreeBSD),
OpenMPI and NFS, making them good choices to demonstrate the result of the working cluster in
this project.

3.3 Recent approaches to cluster systems with cheap components
Although the software used for communication between the nodes has not changed (MPI/NFS) the
approach to deploy the nodes and the hardware has.

Since the Raspberry Pi foundation released the first generation of the computer it has been used not
only in primary schools (the target audience, initially), but used heavily by hobbyists and academics
to showcase various projects. This was an effect of the low cost of the device and the very good
Linux support, initially from Debian, one of the most popular Linux distributions, and then by
Archlinux, Ubuntu and others.

3.3.1 Broberg cluster

The first attempt to run OpenMPI on the Raspberry Pi platform was by Broberg (2012) who, at that
time, had to compile the binaries for the software to work as it was not included in the distribution’s
repositories. That of course is a very technical approach and is so time consuming that he had to run
the compilation inside a virtual machine emulating the arm architecture on his personal computer.

Since then, the binaries for OpenMPI have been released in the official Raspbian repositories and
can be used like any other package available there.

]

Figure 1: Iridis-pi (Cox et al 2014)

3.3.2 Iridis-pi

A year later Professor Cox and his team at the university of Southampton have published a paper
about Iridis-pi (Cox et al. 2014). Iridis-pi (Figure 1) is a 64-node cluster made of Raspberry Pis that
has been configured manually to run LINPACK, OpenMPI and other benchmarking software. In this
paper, they propose that the cluster of Raspberry Pis is ideal for academic purposes and argue that:

“The small size, low power usage, low cost and portability of the “Iridis-Pi” cluster
must be contrasted against its relatively low compute power and limited
communications bandwidth (compared to a contemporary, traditional HPC
cluster), making this architecture most appropriate as a teaching cluster.” (Cox et
al., 2014, p7)

One of the goals of starting this project has been the fact that Coventry University offers a parallel
and distributed computing module, 370CT, that is based on OpenMPI. The module would definitely
benefit from a way to help the lecturers deploy a cluster of cheap machines easily, to demonstrate
the principles of distributed computing in workshops.

3.3.3 RPiCluster

Another cluster demonstration was the one named RPiCluster from Kiepert (2013), who has made a
32-node cluster and demonstrated its distributed processing capabilities in his report. Kiepert is
using the Archlinux distribution which, as he suggests, is more efficient. Unfortunately, he is
compiling the source code for his MPI software (MPICH), which, for the purpose of this project, was
not acceptable as it is requiring substantial technical knowledge and time from the user.
Furthermore, his approach configures manually the images needed for the nodes, adding complexity

to the end result. | aim to remove this complexity from the user and automate as many components
as possible to deliver a working cluster with OpenMPI installed and ready to accept commands.

"3
\
B!
1
1
.
hJ

Figure 2: RPiCluster (Kiepert 2013)

Kiepert’s paper shows that a cluster of Raspberry Pis can be organised in a compact box and
powered from the 10 headers instead of what one would normally do, which is power the device
from the micro-USB port. He has demonstrated that he can pack 32 compute nodes in an enclosure
similar to a desktop case as can be seen in Figure 2. In this project, | am going to be deploying
Raspberry Pis in the usual way, connecting only the USB port to the mains and the Ethernet port to
access the university network. This is a choice taken to make the process of creating a cluster as
simple as possible for the user.

3.3.4 DeConinck cluster

Adam DeConinck has created an implementation of a Ansible-configurable Raspberry Pi cluster on
his GitHub repository (DeConinck 2013, Nvidia and DeConinck 2013). His approach is very similar to
what | aim to have installed at the end of the configuration of the cluster.

He uses Raspbian to operate the nodes, OpenMPI and NFS for the computation and Ganglia to
monitor the system. His guide shows very good understanding of how to set up cluster systems with
Ansible and that has been a source of inspiration for my own implementation.

One interesting step in his guide is the fact that he is using a different Ansible playbook for the
master node (called “headnode”) and another for the slave nodes.

Unfortunately, DeConinck’s approach, like the previous ones mentioned, does not have user
automation in mind for the initial configuration part. His guide, explains that the user has to clone SD
cards, which is perfectly acceptable for the purposes of “as less user interaction as possible” that |
want to achieve, but he is creating simple Raspbian images and does not include any specific

element in the system that would enable him to learn the booted Raspberry Pi’s IP address. He just
enables SSH and finds the IP using network mapping tools. Instead, he could add enough scripts/text
files in the SD cards to let a central location know their network IP address, maybe even download
and run scripts from that central location that the user has control of.

DeConinck’s example as | have mentioned seems to be the closest to what | have in mind for a
cluster that requires minimum intervention from the user (only the SD card imaging process is
needed) and manages to configure itself to have an MPI, NFS software installed via Ansible
playbooks.

3.3.5 Pi Dramble

Jeff Geerling has published his own implementation of a Beowulf cluster of Raspberry Pis that use
Ansible to set up the high-level software. He is using Raspbian and Ansible to set up the nodes to
serve a Drupal website though a High Availability cluster (Geerling 2015).

His project offers very good documentation on how to set up the Raspbian OS with Ansible and he
has packaged a library of Ansible playbooks to the Ansible Galaxy repository.

On the other hand, Geerling’s project does not automatically configure itself and does not install the
software | require for this project (OpenMPI and NFS).

3.4 Conclusion
There are many good approaches to creating clusters with Raspberry Pi using many different tools
and with many different software installed on the systems.

The old cluster examples | have talked about all use heavily customised software to configure and
automate processes on the nodes manually. Broberg, Iridis-pi, RPiCluster and the DeConinck clusters
all successfully install and configure OpenMPI for the purpose of distributed computing, but fail to
achieve minimum interaction from the user, by requiring manual network configuration on each
node. Finally Pi Dramble both does not automate the network setup and installs a LEMP stack
instead of the MPI that | require.

These projects have shown that the Raspberry Pis can be used in a cluster to enable educators and
students to discuss effectively how distributed computing works, test algorithms and programs on
such a cluster with a very low budget.

Although the academics that work with distributed systems usually have good knowledge on how to
deploy those systemes, this is not always the case and it can be a very difficult experience if they must
find their way out of a problematic setup. Based on the previous findings | will be making a set of
tools that will set up a Beowulf cluster of Raspberry Pis using Ansible to set up the OpenMPI
software automatically and with as little as possible intervention from the user.

4. Method

4.1 Project deliverables

After discussing with my supervisor on the findings that are discussed in the Literature review
conclusion (Chapter 3.4), | have compiled a list of what this project aims to deliver and, by doing
that, solve the problem discussed earlier.

4.1.1 Network independent

The scripts and the automation must be network agnostic. This means that the user will not have to
ask a network administrator for any particular information and/or special access, such as, for
example, static IP addresses or the ability to broadcast. The cluster will use the standard network
stack of the Raspbian OS, which will act like any other machine connected to the network and get a
standard IP address. That IP will be then communicated to a central location (git repository) and will
thus allow each node to know about the rest.

4.1.2 Unattended setup

After imaging the SD cards the user should not have to do any other work for the system to get
ready, apart from plugging in the devices. As long as the nodes have network (and internet) access
to the git repository then the system will start setting itself up.

4.1.3 Input will be limited

Although I aim for as little user effort and interaction as possible, unavoidably they will have to
perform a few trivial operations before the automation begins. The user will need to pass the git
repository address, the private and the public key to access that repository to the script that creates
the SD cards for the nodes. As an extra feature, | would like to add a question that lets the user
choose if the generated SD card is for a master node or not.

4.1.4 Easy access to the master

The final feature that is required by this project is that the user will be able to connect easily to the
master node and run OpenMPI commands/programs. As an extra feature, the user will be able to
run extra Ansible playbooks if they wish to further extend the functionality of their cluster.

4.1.5 Documentation
Although not a feature, this is one of the deliverables for this project especially because it is going to
be open source and potentially used by the community and further enhanced and tweaked.

4.2 Methodology

As | have explained earlier, the project will be mostly a compilation of programs and scripts that
manage to set up the cluster using automation tools entirely. Thus, the primary research method will
be building/programming and investigating the results to see if the deliverables are met. Along with
the programming a lot of additional research for the specific technologies will be conducted to find
the solutions that | find best for this project.

The investigatory part of the build methodology has been conducted in the third chapter and
conclusions have been made about what is missing from the current literature that | am going to try
and fill. In the following sections | will discuss how | have developed each of the several components
of this cluster project and at the end how all work together.

4.3 Why Git?

As | have explained earlier, one of my goals is for the cluster to be able to share the nodes’ IPs to a
centralised location/service which then would be used by Ansible. This service needs to be running
at least initially for the Raspberry Pis to auto-configure.

Having a custom full stack application running just for this purpose is a waste of programming time
and since much simpler solutions exist it adds unnecessary complexity for the user. The suggestion
from my supervisor in one of the early meetings was to use git to handle the orchestrating part,
which was an interesting idea for me to explore.

SaaSs providers like GitHub and GitLab offer exactly what we need, a 24/7 free service that can
handle multiple connections efficiently (that is mostly because git itself is efficient in transmission of
data (Walters 2012)) and work over SSH/HTTPS to overcome potential network restrictions.

An extra bonus is that they are very popular and offer a useful interface to work on. A lot of
developers and many academics and students who are programming know of, or have used, at least
one of the two SaaS providers | am considering.

Between the two | chose GitLab because they offer free private repositories which would prove
useful to users that do not want to disclose their cluster’s IP addresses to the public.

The repository | have created for this project can be found on this address and easily be cloned:

https://gitlab.com/ledakis/picluster

The simplicity of the repository cloning using the web interface adds to the overall user experience
and removes a fair amount of friction at the very beginning of the process. For the scripts to work,
the user will clone and download his copy of the repository and initiate from there.

4.4 Script injection

This part has been the most interesting and was a steep learning curve for me because | had to learn
Bash scripting and | had to do it as the first thing because the rest of the steps depend on this. When
a Linux system boots, it will initiate several core subsystems and then it will start other higher level
functions.

4.4.1 Choice of initiation for my script

In my research, | needed to find a way to make sure | can inject a piece of code somewhere along
that process so that my script can then run and start the automation. | have found several ways to
do this:

a. Create my own service for the new system and have it start after the boot process.

This seemed like a good approach in the beginning, but eventually | concluded that it would take a
lot of time to learn how to properly create a system service on Debian OS. Furthermore, | still did not
know of a method to inject the script that installs the system service to the system. A chicken/egg
problem which was discarded from the beginning.

https://gitlab.com/ledakis/picluster

[Unit]
Description=Service module for the picluster
Documentation=https://gitlab.com/tledakis/picluster

[Service]

Type=simple
ExecStart=/home/pi/picluster/service.sh
ExecStop=pkill service.sh
StandardOutput=null

Restart=on-failure

Figure 3: An attempt to create a service definition file

The only way to make this work would be to create my own custom images of Raspbian that have
the service installed already; this is not one of this project’s intentions because the Raspbian
developer team release new versions based on Debian which means it is a release cycle that updates
every couple of months and would in effect stop updates to the users of this cluster project until |
update my own images.

b. Try the systemd method

systemd is the new initiation system that (almost) every major Linux distribution uses and has
replaced init (the old system). RedHat (2015) and DigitalOcean (2015) provide extensive
documentation on how to add “systemd unit files” which can be programmed to be services among
other things, but again, given the limited time allocated to this task | chose to look for an easier,
simpler solution.

C. Try init

init is the old good and tried system that has worked for decades in the Unix/Linux world and still
works in many applications. It is still being preferred among traditional Unix communities like the
FreeBSD developers. | was inclined to use this from the beginning just because it was so simple, for a
script to be injected in the initiation system | only need to add it to the /etc/rc.local script that runs
last after every other init system (Raspberry Pi Foundation 2014a).

d. Try cron

Cron is the internal scheduler for the Unix/Linux systems and can be programmed to do anything we
want it do. It can be told to run scripts at set times or even run after a successful reboot using the
@reboot option (Raspberry Pi Foundation 2014b). After trying to find a way to inject the script into
cron | found that it is extremely hard and not suggested because | would be touching files that are
meant to be used by cron only.

The choice was to go with the init approach as it was the simplest and thus the less error prone. The
rest of them would involve additional learning that | could not afford.

4.4.2 Implementation

Now that | had an approach | wrote the script that needs to be injected into the rc.local file. One
caveat of this is that any script that resides in the rc.local file needs to finish running successfully or
the boot process will halt there.

if ! crontab -upi -1 | grep "run.sh" =/dev/null; then
crontab -upi /boot/picluster/picron
fi

exit @
Figure 4: The end of the rc.local script

*f2 * * * * /fbhoot/picluster/run.sh

Figure 5: The picron file

As shown on figure 4 the rc.local script in order to exit properly and in time, contains a simple
command to add the picron file into the pi user’s crontab. This was by design so we would get both
the successful script exit and we would be utilising the very powerful cron service that | wanted to
use as | have mentioned earlier at choice “d”. Also, after careful consideration, | added the
conditional statement to check if picron directive is already in the crontab and skip inserting it in that
case. This would prevent inserting the directive every time the system reboots.

On figure 5 the single line content is shown that will be injected to the crontab. The */2 * * * *
means it will run this command on every minute that is divisible by 2, thus every second minute.

4.5 run.sh
This is the most important file that orchestrates everything in the system. It is designed to make

simple checks (because it runs very often) and then quit and save its parameters until next time it
runs.

PI_check_master=1
PI_init_repo=0

PI_conffile=/home/pi/.piclusterrc

if [! -F "$PI_conffile"]; then
cp -f /boot/picluster/conffile.sh $PI_conffile
if [[! -d "/home/pi/.ssh" 1]; then
mkdir /home/pi/.ssh
fi
cp -f /boot/picluster/priv.key /home/pi/.ssh/id_rsa
chmod 606 /home/pi/.ssh/id_rsa
cp -f /boot/picluster/ssh_config /home/pi/.ssh/config
chmod 644 /home/pi/.ssh/config
cp -f /boot/picluster/pub.key /home/pi/.ssh/id_rsa.pub
chmod 644 /home/pi/.ssh/id_rsa.pub
cp -f /boot/picluster/pub.key /home/pi/.ssh/authorized_keys
chmod 600 /home/pi/.ssh/authorized_keys
cp -f /boot/picluster/gitconfig /home/pi/.gitconfig
chmod 644 /home/pi/.gitconfig
PI_init_repo=1
fi

source $PI_conffile

Figure 6: run.sh first part

As can be seen on figure 6 it begins by initiating crucial variables for the script’s logic, the
“PI_check_master” and the “Pi_init_repo”. The check master is set to True in the beginning because
| want the script to be checking if it is the master, until it has other evidence that it is not. This way |
can ensure that the master check will run at least the first time the fresh system boots and then
when it determines its master status it will turn the checking off. The “PI_conffile” file contains the
saved environment variable from previous runs, and as shown its location is ~/.piclusterrc.

The init repo variable is meant to let the script later to clone the repository to the system or not.

[conffile.sh 56 Bytes I

export PI_repo_addr=git@gitlab.com:ledakis/picluster.git

Figure 7: conffile.sh

The big if statement checks if the .piclusterrc exists and if it doesn’t it means this is the first time the
script runs. On figure 7 is shown the conffile that is generated by the SD imaging tool and contains

the repository address. This file becomes .piclusterrc and later on (line 29, figure 6) is loaded. In the
condition block the rest to be done apart from the repository information, is of course the SSH keys.
The keys are copied from the boot partition where were saved by the SD imaging tool that | am
going to discuss later. Finally, the init repo variable is set to true as we are certain that this is a first
run of this system.

if [! $(which git)]; then

sudo apt update

sudo apt -y install git ansible wvim
fi

if [! -d /home/pi/picluster]; then
PI_init_repo=1
fi

if ["$PI_init_repo" -eq "1"]1; then
if [[-d /home/pi/picluster]1]; then
rm -rf /home/pi/picluster
fi
git clone -q $PI_repo_addr shome/pi/picluster
fi

Figure 8: run.sh second part

This is another interesting part of the run script (figure 8). It checks if the git command exists and
runs the package manager (apt) to update and install Ansible and git which are essential, and a text
editor.

What follows is another check, if the repository directory does not exit, it will set the init repo
variable again to True. | have added this after testing the system and when for some reason the
.piclusterrc file was not written (10 problem for example) it would fail later because the repository
was not there to run files from. This has happened a few times and after investigation it appears the
SD cards sometimes fail to read files with the multiple partitions the Raspberry Pi uses.

The next condition checks if the init repo variable is true and then checks if the repo is there. If it is,
it will remove it by force and clone it again. This has been added to prevent failures in 10 as
mentioned before.

if ["$PI_check_master" -eq "1"]; then
bash /home/pi/picluster/node-master.sh
PI_check_master=0

fi

bash /home/pi/picluster/up2git.sh

export -p > $PI_conffile
chmod -x $PI_conffile
Figure 9: run.sh third part

Finally, the script will initiate the master checking script and set check variable to False so that it
won’t have to run that script again.

boot_master_file="/boot/picluster/master"”
mac_addr=$(cat /sys/class/net/eth@/address | tr -d ":")

if [-f $boot_master_file]; then
echo $mac_addr > /home/pi/picluster/master
git -C /home/pi/picluster/ add shome/pi/picluster/master
git -C /home/pi/picluster/ commit -m "new master"
git -C /home/pi/picluster/ push origin master
if ! crontab -upi -1 | grep "masterRun.sh" >/dev/null; then
(crontab -upi -1 ; cat /boot/picluster/mastercron) | crontab -upi -
fi
fi
Figure 10: the node-master checking script

Figure 10 shows how the master check is performed. The SD card creation tool creates an empty file
called master into the boot partition (more about the boot partition files follows). If the file exists, it
means this node is the master and will add the mac address inside a file called “master” in the
repository and upload it so that it is known to others (and the user). Then it will add the special
master crontab using the same technique that | have used for the normal node, as explained earlier.
In a similar manner, the master cron script runs every three minutes instead of two for the simple
node. Worth mentioning is line 19 (figure 10) where the existing crontab is concatenated with the
new directive into one. This ensures the run.sh script will continue to run and won’t be overwritten
by this operation.

At the end of “run.sh” (figure 9) the environment variables that have been created in this script are
saved so they can be used the next time it runs. And just before that happens the script that updates
the IP address to the repository is run, which | will discuss next.

4.6 IP update scripts
From “run.sh” the script that initiates the IP updating mechanism is “up2git.sh”.

[up2git.sh 622Bytes Y [) Blame

git -C /home/pi/picluster/ remote update
repo_update_needed=$(/home/pi/picluster/git_up2date_needed.sh)

if [$repo_update needed]; then
git -C /home/pi/picluster/ fetch origin master
git -C /home/pi/picluster/ reset --hard FETCH_HEAD
git -C /home/pi/picluster/ clean -df

fi

ip_changed=$(/home/pi/picluster/ip2file.sh)

if [$ip_changed]; then
git -C /home/pi/picluster/ add /home/pi/picluster/ip/$(cat /sys/class/net/eth0/address | tr -d ":")
git -C /home/pi/picluster/ commit -m "new ip for $(cat /sys/class/net/eth0/address | tr -d ':')"
git -C /home/pi/picluster/ push origin master

fi

Figure 11: up2git.sh

The “up2git.sh” script as shown in the figure 11 updates only the remotes of the repository (to
preserve bandwidth and reduce system load) and then updates the repository if it has changed on
the git server.

Then it checks if the system’s IP address is different than the one in the repository and if it is, it
updates the repository with the new IP. The method | use to store the IPs was an attempt (after
discussion with my supervisor) to create unique files for each IP, per system. The only thing that is
unique and easily accessible on each machine is the Ethernet port’s mac address. So, | have used
that as the file name of the file that contains the IP of the system.

B git_up2date_needed.sh 239 Bytes MY

update_needed=0

local repo=$(git -C /home/pi/picluster/ rev-parse @)
remote_repo=$(git -C /home/pi/picluster/ rev-parse origin/master)

if [$local_repo != $remote_repo]; then
update_needed=1

fi

echo $update_needed

Figure 12: git_up2date_needed.sh

Figure 12 shows the mechanism that checks for updates on the remote repository using “git rev-
parse” which returns the SHA1 of the HEAD’s commit (Chacon 2014). Because the SHA1 is a string it
is easy to check if the two strings match and if not, force the update.

curr_ip="$(ip address show | awk -F '[/]+' '/inet / && $3 != "127.0.0.1" {print $3}')"
ip_file="/home/pi/picluster/ip/$(cat /sys/class/net/etho/address | tr -d ":")"
changed=0
if [! -f $ip_file]; then

echo $curr_ip = $ip_file

changed=1
elif ["$curr_ip" != "$(cat $ip_file))"]1; then

echo $curr_ip > $ip_file

changed=1
fi

echo %changed
Figure 13: ip2file.sh

In figure 13 above is shown the script that determines if the IP address has changed. It uses the “ip”
command which was found after trying to use a better approach than the “ifconfig” command that
created implications when run. The “awk” language will take the piped content and remove the lines
that don’t contain “inet” for the internet interface and will also remove the loopback address
(127.0.0.1).

This implementation will work even if something goes wrong and, for example, the update is
unsuccessful. The next time the cron runs “run.sh”, the repository will be reverted to the version
that is on the remote and then “ip2file.sh” will again identify that the IP needs to change and will
commit and push the change.

4.7 Master node scripts

So far the “simple” node scripts have been explained, and by this point one can understand how
each node will be able to communicate its address and get the rest of the addresses. Also, because
of the way the master scripts are injected, the master node is no different than the rest apart from a
single empty file (located in /boot/picluster/master) initially.

4.7.1 Cron files
As shown on figure 10, the way the master script runs is identical to the regular scripts, by utilising
the cron service. The content of the “masterRun.sh” script is shown in figure 14.

B masterRun.sh 429 Bytes Iy 0 @

PI conffile=/home/pi/.piclusterrc
PI_local_repo_dir=/home/pi/picluster
source $PI_conffile

bash $PI_local_repo_dir/inv-gen.sh 1>/dev/null 2>&1

pgrep ansible > /dev/null

sts=%7

if [$sts -ne 0]; then
ansible-playbook -i /home/pi/inventory $PI_local_repo_dir/master.yml > /home/pi/ansible.log
ansible-playbook -i /home/pi/inventory $PI_local_repo_dir/nodes.yml == /home/pi/ansible.log

fi

Figure 14: masterRun.sh

This script uses a similar approach to the run.sh script, by loading the local variables file
(~/.piclusterrc) and runs some checks before executing the Ansible playbooks.

4.7.2 Inventory generator
For Ansible playbooks to work, an inventory file containing the list of nodes to perform the
commands on, is needed. This is generated by the “inv-gen.sh” script (figure 15).

echo "[master]"” > $PI_local_repo_dir/inventory
cat $PI_local_repo_dir/ip/$(cat $PI_local_repo_dir/master) 2>/dev/null >> $PI_local_repo_dir/inventory
rm $PI_local_repo_dir/ip/$(cat $PI_local_repo_dir/master)

echo "[nodes]” >> $PI_local_repo_dir/inventory
cat $PI_local_repo_dir/ip/* 2>/dev/null >> $PI_local_repo_dir/inventory
cat $PI_local_repo_dir/ip/* 2>/dev/null > /home/pi/mpiNodes

n

echo
[nodes:vars]
ansible_ssh_user=pi

[master:vars]
ansible_ssh_user=pi
" >> $PI_local_repo_dir/inventory

cp $PI_local_repo_dir/inventory /home/pi/ansible-inventory

Figure 15: inv-gen.sh

The “inv-gen.sh” script will initially put the master node’s IP address to the top of the inventory file
and add it to the “master” group (which only contains itself). Then it will remove the IP file before
concatenating all other IP files in the “ip” directory. | found this the easier and most clean way to do
it, in order to avoid using complex regular expressions that | would need if | wanted to exclude a
single file (Unix Stackoverflow 2015). Removing the master’s IP file is insignificant, as the next time
the “run.sh” runs the “up2git.sh” (figure 11) it will reset the local repository back to the remote’s
version.

Finally, it adds a useful variable for Ansible to perform without problems (ansible_ssh_user). The
new inventory file is saved both in the repository’s directory but also into the home directory of the
master node to avoid being overwritten by any other change.

At this point all the shell scripts that are used have been explained so | will be moving on to the
Ansible section.

4.8 Ansible

The Ansible part was another challenging part of the project. | have spent a lot of time researching
(Heap 2016) how it works in order to make the playbooks close to the specification. One problem |
only found after | wrote the playbooks was that the Ansible version | was using to write playbooks on
my computer was the current release (version 2.3) instead of the old version of Ansible that is
available in the Raspbian repository (version 1.7).

This led to complications as the recent release contains several notations and modules that were not
included in v1.7 (which is dated August 2014 (Python Software Foundation 2014)). One example of
such feature is the “become” directive used in tasks that will use clever algorithms to become the
super user on the node that is configured to perform administrative tasks.

Of course, when | got notified of the error | figured that the problem was with the outdated version
and found a solution for the 1.7 release. Instead of using “become” | used the “sudo” directive in the
playbook that achieves the same result.

@ nodes.yml 124 Bytes Y [3 master.yml 86 Bytes I

- name: run base config - hosts: master
hosts: nodes user: pi
remote_user: pi sudo: yes
sudo: true roles:
roles: - core

- core - nfs
- openmpi - openmpi
- nfsClient

Figure 17: master.yml|
Figure 16: nodes.yml|

Ill

The “node.yml” shown in figure 16 runs the base configuration (figure 18), installs the OpenMPI
library with mpidpy (a library to run Python scripts written for MPI, figure 19) and then installs and
configures the NFS client.

Similarly, the master playbook (figure 17) runs the same roles but with NFS being different, for the
master node it installs the NFS server and configures it accordingly.

The roles are explained below.

- name: enable ssh an bhoot - name: install the required packages for OpenMPI
service! action: apt package={{item}} state=installed
name: ssh with_items:
enabled: vyes - openmpi-bin
- openmpi-checkpoint
- name: update apt - openmpi-common
apt: - openmpi-doc

update_cache: yes
cache_valid time: 7200

Figure 18: common role playbook

- libopenmpi-dev
- python-mpidpy

Figure 19: OpenMPI role playbook

The common playbook runs on all the nodes, including the master and ensures the SSH daemon is
enabled, and then updates the package manager if the local cache is older than two hours (the value
is in seconds) (Shah 2015).

The OpenMPI playbook that runs on all the nodes as well, installs only the necessary packages for
me to showcase that the OpenMPI can run.

To achieve this, OpenMPI software needs to be installed, SSH connectivity needs to be established
and a shared storage drive needs to be used for all the nodes to be able to get the scripts to run. So
far OpenMPI and SSH are working with no issues and what is left to configure is the shared folder
over the network.

The best approach for this, | concluded, was NFS, mostly because it is straightforward to install and
configure and is suggested by other OpenMPI tutorials as the software that should be used for such
installations (Geerling 2015, DeConinck 2013).

- name: install the required packages for NFS
action: apt package={{item}} state=installed
with_items:

- nfs-kernel-server
- nfs-common

- name: create shared directory for NFS
file: path=/share state=directory mode=777 owner=root group=root

- name: NFS config file
action: template src=exports.j2 dest=/etc/exports

- name: rpcbind is running
action: service name=rpcbind state=started enabled=yes

- name: NFS is running
action: service name=nfs-kernel-server state=started enabled=yes

- name: exportfs
action: command exportfs -a

Figure 20: the master node NFS playbook

When | began writing this Ansible playbook | did not know what | needed to create for an NFS setup
to work. | have checked tutorials online and the Ubuntu documentation (Ubuntu Help 2014) but the
most helpful resource was the FreeBSD handbook, particularly the chapter explaining NFS (Swingle
and Rhodes n.d.). Of course, that chapter did not provide me the specific commands | needed for
Ansible, but using my experience of Unix and the guide from the handbook | compiled a list of what
the playbook needs to do in order to complete the setup.

After installing the required packages, a folder needs to be created that is going to be shared, | chose
to use the “/share” path, which makes it easy to identify from the user that runs MPl commands.

Shown in figure 21 is the exports.j2 template that will create the necessary “/etc/exports” file which
is required by NFS to give access to other network clients. The template is filled by a “magic” variable
of Ansible that inserts the list of the group “nodes” specified in the inventory (Shah 2015). The
resulting file can be seen in figure 22. This file is generated and updated every time the playbook
runs which means that it will always be kept up to date with new nodes joining the cluster.

[exports.j2 81 Bytes Y

{% for host in groups['nodes'] %}
/share {{host}}(rw,no_root_squash)
{%endfor %}

Figure 21: exports.j2 template

Finally, the playbook ensures “rpcbind” and the NFS services are enabled for the system and then
runs the “exportfs” command which updates NFS with the new information in the “/etc/exports” file
(Kirch and Brown n.d.).

- name: shared directory for nfs
file: path=/share state=directory mode=777 owner=root group=root

- name: mount the share on the remote
action: command mount {{groups.master}}:/share /share

Figure 23: the NFS client playbook

The playbook for the NFS clients is much simpler, because it only needs to connect to the remote
service and mount it. Again, | am using the same path for the shared folder under “/share”. The
groups.master notation, similarly to the exports.j2 template (figure 21) inserts the single master IP
and mounts the remote folder to “/share”.

At this point all the intelligence behind the automation of the auto-configuration of the cluster has
been explained. Figure 24 shows at a higher level how this process works. To summarise:

The nodes get the repository from GitLab, then they update back with their IP address.
The master gets the updated repository with the list of the IPs, and then sets them up using Ansible.

Then the user can run MPI scripts from the master directly.

3. List of nodes

git SaasS

(eg. Gitlab) N * master node

2. Send I,

1. Get repository mac address

4. Set up with Ansible

node
node
node
node

Lad | Pl | et |

node n

Figure 24: Automation diagram

4.9 Python user interface
The final part of the development process was to create the necessary scripts that will guide the user
to create the SD cards for the nodes.

After significant research and deliberation with my supervisor we concluded to just make a simple
shell interface that will work, because of time constraints. Since the project is open source |, and
others will be contributing new features at a later time, and a graphical interface could be one of
them.

For the interface scripting | chose to use Python because | found Bash quite challenging and | am
better prepared to use my existing knowledge of Python that | have gained in the University.
Another factor to influence my decision was that Python makes it much easier to manipulate strings,
that | am going to use in the interface as | will demonstrate next. Being an advocate of newest
technologies | also have decided to use Python3 instead of the old Python2, which is “end of life”
marked and should not be used in the industry anymore. The script does not have any special
dependencies that are not already included in the standard Python3 installation.

The sole purpose of the “initSD.py” script is to let the user easily create the SD cards for both the
master and the slave nodes. The only thing that is required before running the script is for the user
to have downloaded and extracted the Raspbian zip to their home directory and have an SD card
plugged in their system. During the run time of the script it will wait for user input in various places,
thus letting the user decide and take action per their needs.

The script will first try to guess which Unix device already connected to the system that looks like a
potential target to write to (figure 25). This usually is a device connected to a USB port and not a
serial connection (even the included SD readers are recognised by the system as USB devices so that
should work with no issues). The list of active mounts of (and including) the device will be displayed
for the user to choose. A “safeoptions” mechanism has been included to prevent accidental writes to
the main disk device thus destroying the user’s OS installation.

drivescmd="1ls -al /dev/disk/by-path/*ush*"

findemd="find -P ~ ! -path '#Trash*' -and -name '*raspbianx*.img’'"
print()
msg={

'

'main’:'Check the list of usb mounted drives above, please pick the one NOT ending in ',
"linux’:'\na number such as sdbl, but instead the one without it e.g: sdb’,
'darwin’:'\nsl/s2 and so on, but instead the one without it, e.g: disk2’,
'main2’': '\nIf you make a wrong choice the sd card will not work.
3

if not sys.platform in msg.keys():
sys.exit('platform not supported yet')

safeoptions=1list()

for line in run(drivescmd)[@]:
drive=line.split("/")[-1]
safeoptions.append(drive)
print("/dev/"+drive)

if len(safeoptions)<i:
sys.exit('Error finding a suitable device to write on’)

print(msgl'main’']+msg[sys.platform]+msgl 'main2'])

print('enter here:"')
inputl=input("/dev/")
if inputl not in safeoptions:
sys.exit('choice not in the list, will exit’)

Figure 25: Device selection

Afterwards, the script will look into the home folder and find any files that contain “raspbian” and
end in “.img” to be used (figure 26). A list will be displayed for the user, to choose which file they
want to write to the SD card. This way the tool will be working with future updated versions of
Raspbian and no hardcoded version needs to exist in the source code, making it more agile.

msg="Select the ;mgw¥ile you want to write to "+"/dev/"+inputl
print(msg)
print()

choices={}

for number,line in enumerate(run(findcmd)[@],start=1):
choices[number]=1line
print(str(number)+" | "+line)

input2=input(“"enter the correct number: ")

try:
input2=int(input2)
if input2 not in choices.keys():
sys.exit(’choice not in the list, will exit’')
except:
sys.exit('input was not a number, will exit')

ddcmd="sudo dd if=%s bs=4M of=%s’ % (choices[input2],'/dev/ '+inputl)

print()

print('will run this:")

print(ddcmd)

agreed=input("""do you agree? Check the command again and make sure
it is correct!\n Proceed? y/N: """)

Figure 26: Raspbian image selection

The next dialog (figure 26) will display to the user what the script wants to run (the full dd
command) along with a notice before agreeing.

When the user accepts, the script will start the dd copy, requiring the sudo password, and take
around five minutes, depending on the SD card writing speed (figure 27). Then when it is finished in
order to be able to properly mount the new partitions, the system’s partition table needs to be
reloaded, using the “blockdev” command (Maroudas 2016).

if agreed =='y':
print(’'You might get asked your sudo password:’)
print("""The dd command will take a few minutes to finish depending
on the size of the image and the SD card speed. You will get a
confirmation when finished.”"")
print('Unmounting /dev/%s'%inputl)
unmount(inputl)
print()
run(ddcmd)
print()
print(’'finished’)
print('now reloading the partition table')
print()
cmd="sudo blockdev --rereadpt /dev/%s' % input]l
run(cmd)
print(’'finished reload, moving on to mount’)
print()
elif agreed=='skip’:
pass
else:
print('Aborted by user')
sys.exit(@)

Figure 27: dd process and partition reloading

Following the previous process, the script copies the SSH keys from the user’s “.ssh” directory (of
course after their confirmation) and intelligently finds the git repository URL from the current
repository this script is running on. It displays the result for user confirmation/alteration before it
writes the variables to the SD card.

A final question to the user is whether the SD card is going to be used on a master node. The choice

o, .n

is as simple as a “y” or just hitting the return key.

All the questions asked in the “initSD.py” script | have decided to add one by one, by what has been
necessary at the time and with feedback from my supervisor on what an academic would want to
have in such a script. Thus, | am confident | am not using an overly complex structure for this script
(since it is just a question/action format) and more importantly, | do not tire the user.

4.10 SSH to master and Documentation

The “sshmaster.sh” script is a small single line script purposed to make the it easy for the user to
connect to the master node as soon as it is up and running.

By default, this contains the following command (figure 28) which, when run directly from inside the
repository on the user’s machine can directly connect to the master server. An Asciicast example will
be included as a link in the evaluation section.

4 p f sshmaster.sh ® \
ssh pi@$(cat ip/$(cat master))|

Figure 28: sshmaster.sh script

The user can start imaging the SD cards by navigating to the “python-scripts” directory and executing
the initSD.py script by running “python3 initSD.py”. The script will guide the user and gracefully exit
if problems arise.

The documentation on how the files work and explaining the repository structure has been written
inside the repository’s Readme file, written in markdown. This way the whole project can be in one
location, and can be easily organised using git.

The markdown viewer that is included in the web interface of GitLab and GitHub further help
present the Readme document in a much cleaner way, as can be seen in figures 29 and 30.

[3) README.md

The picluster repository will have the necessary files for the ansible-backed raspberry pi beowulf cluster
project.

File structure of the repository
/ip/
Contains the generated IP (individual) files for all nodes (including master).

README . md

This file you are reading, contains all relevant information about the project.

ip2file.sh

Saves the current IP of ethe tothe /ip/<etho-MAC-ADDRESS> file, and overrides it, if exists.

up2git.sh

Pushes to git the new IP that has been generated by ip2file.sh.

/local-vars/

Directory that will contain all the variables for the individual deployment each time. For example the MAC
address of the master node, the public SSH key that the master will use, etc.

/master

File which will contain the MAC Address of the designated master node. On fresh repositories this file will
not exist, but will generated from the first node that savesits [P in /ip/ directory. If the file exists (either
because the Piis not the first to boot and add its IP or because the user has added the file manually) it will
not be touched. Y

Figure 29: Readme, part 1

/boot/picluster/master

Exists only on the designated master sdcard/node. Will be checked by the /node-master.sh script.

/boot/picluster/priv.key

The private key that ought to have write access to the git repository. Otherwise nothing will work. This key
is going to be used for regular 55H as well. It is going to be copied to /home/pi/.ssh/id_rsa
automatically.

/boot/picluster/pub.key

The public key for the aforementioned private one. It is going to be copied to
/home/pi/.ssh/id_rsa.pub automatically.

Processes

Raspberry Pi boot process

After the Debian process finishes, the scriptsin /etc/rc. local will run. In those scripts there will be
initialisation procedures that will get the configuration from /boot/picluster.conf and parse it
accordingly.

The script will also copy the ssh keys to /home/pi/.ssh/

Given there is internet connection the script will clone the git repository into /home/pi/picluster (now
referred to as SLOCALREPODIR and add decide if it is a master and add the master file in the root of the
directory. Then it will add its IP in $LOCALREPODIR/ip/ and commit-push back.

Then it will set up a process to be added as a service in the system so that it never gets killed.
That service will from now on handle everything and the initial script can terminate.

If the Piis configured to be a master, it will initiate the master script.

Master

Figure 30: Readme, part 2

5. Evaluation - Results

To evaluate this project, we need to consider the original research question. The title of this report
is:

“An Ansible implementation of a self-configuring Beowulf cluster of Raspberry Pis in a localised
environment for the purpose of distributed computing using Open MPI”

So, the research question is, as defined in the beginning, if we can create a set of tools that will
enable any number of Raspberry Pis to automatically configure using Ansible and successfully set
themselves up for OpenMPI usage.

5.1 Deliverables

After completing the development and testing phase of this project | can acknowledge that this goal
has been achieved. To elaborate, | will go over the list of deliverables defined after the literature
review and in the beginning of the method chapter (section 4.1 Project deliverables).

a. Network independency

One of the important deliverables of this project was that the cluster had to be network agnostic,
meaning that it should be able to self-configure regardless of the network.

As | have explained in the 4.6 chapter, the IP update scripts will have nothing to do with the network
stack of the system, but only get the current IP address and share it over git. So, as long as any other
system on the same network (desktops, laptops, smartphones) can get an IP address through DHCP,
so can the Raspberry Pis. The IP then will be updated with the repository and shared to the rest of
the cluster. In addition, if the network also allows direct connections using IP address (like SSH
connection) then the cluster will have no problem configuring, as it is only using SSH protocols to
communicate to git and between the nodes.

b. Unattended setup

This was delivered as well by the project. The scripts described in sections from system start-up
injection to bash updating repositories and IP addresses through cron, and even the higher-level
configuration being done by Ansible, all converge to a truly unattended setup. The user only has to
prepare the devices physically (plug in the SD card, the power adapter and the Ethernet cable),
which of course is unavoidable. The rest is being done automatically.

c. Little input from the user

This deliverable asked for as little input from the user as possible in the initial stage of creating the
SD card. This, as well has been met, as the user only answers simple questions, like which device
contains the SD card, which image to write to it and if the SD card is destined to a master node. The
rest of the questions can be skipped with an enter as they have default values hardcoded, or
guessed intelligently as shown in the 4.9 Python chapter.

d. Easy access to the master

This, although an easy task, is one of the most useful deliverables as it lets the user quickly and with
no frustration connect to the master node. As shown in the last (4.10) section of the methodology
and as | have recorded in an Asciicast later this has been implemented and is as easy as running a
single script, “sshmaster.sh”. All the SSH keys are already there on all nodes (including the master)
and the connection is seamless and with no errors.

e. Documentation

Documentation has been written in the front of the web interface of the git repository on GitLab in
form of a Markdown document called Readme. This serves the double purpose of being very visible
(as it is the first thing displayed in the repository) and being easy to edit and update by being a
simple and elegant mark-up language.

5.2 Demonstration

The previous discussion has argued that the deliverables have been met. To demonstrate this | also
have recorded two “Asciicasts” which, as explained in the 2. Term definitions, are a variation of
screencasts but displaying only the presenter’s shell, making them an excellent choice for the task.

The following URL points to the Asciicast that demonstrates how the user can create a new SD card
using the Python tool:

https://asciinema.org/a/5zn8w9c3p4pdffc86co86kfx8

After the user creates the necessary node SD cards and the single master SD card using the Python
script demonstrated above, then they will turn the devices on and let them auto-configure. The
process does take at least 6 minutes depending on the Internet bandwidth of the network as all the
nodes when booted start to download the updated package repository list and install Ansible, git
and vim as explained in 4.5 run.sh section.

During this time, of course, the user can be watching how the git repository changes as the updates
will be regular commits there. When the master has submitted the master commit, the user will be
able to connect to it and start using the cluster (even if not all nodes are active yet).

The following URL points to the Asciicast that shows how the user can easily connect to the master
node and run OpenMPIl commands successfully. In the demonstration, | have used a python script
that prints “hello world” from each node in the cluster.

https://asciinema.org/a/4liwwuma4trab65091w3thxtk

https://asciinema.org/a/5zn8w9c3p4pdffc86co86kfx8
https://asciinema.org/a/4liwwumq4trab65091w3thxtk

6. Project management

In order to efficiently develop the required software for this project | initially planned the 14 weeks |
had available in a simple way as | have demonstrated in the project proposal (Appendix 11.1). In the
proposal, | planned each step of the process that | had envisioned then in its small-compact time
slot, more like how an agile team using the Scrum framework would have worked. The project was
split into small sprints and after each cycle | would mark the task off the product backlog and
continue to the next in line.

Since | was working alone and not as part of a team, my focus was at the current sprint and not the
previous or next ones, making the process as clean as possible and requiring a certain amount of
dependencies met before | could proceed to the next step. Based on the initial plan | had also
created a simple Gantt chart (figure 31) that shows exactly how each task does not overlap with
others (apart from 2-3 occasions that the tasks would be easy to do at the same time, like the test fix
and documenting near the end of the timeline).

Duration vs Days since beginning of project
0 10 20 30 40 50 60 70
Hardware gathering I8
Git related scripts 3
SSH key model 3
Initial Ansible playbook 3
Test 1 3
Test 1 fixes 3
Test 2 3
Test 2 fixes 3
Ansible playbook for openmpi 3
Test 3 3
Test 3 fix 6
Documentation 3
Time for setbacks 12

Presentation/Final report writing 14

Figure 31: Initial Gantt chart

The initial plan albeit being thorough, did not include difficulties encountered over time. It appears |
have underestimated the time it would take to learn about the Ansible and the testing of the Python
script. These tasks required considerable more time than allotted and as a result | had to use the
“time for setbacks” period to fix them.

Over the final weeks and after the presentation meeting with my supervisor | have tried to follow his
instructions to focus mostly on the cluster working rather than too complicated and specialised
parts, such as a better interface or an additional zeroconf method of configuring.

After the presentation meeting | took the chance to view the project from a different perspective in
order to find how | would prioritise best (a list of handwritten notes | took while discussing with the
supervisor after the presentation can be found in the Appendix’s handwritten notes section 11.4
figure 2). From the 302CEM module | was introduced to the MoSCoW model (Rasmusson 2010) of
prioritising tasks and managed to adjust the rest of the tasks to it.

/. Discussion

This project began as a question in the university’s computer club: “Why can’t we use all the
Raspberry Pis we have to demonstrate clusters to students?”

That was an intriguing question that led me to discuss with my supervisor ways | could accomplish it.
Soon the conclusion was made, that we would not be able to auto discover the nodes because of the
university’s network restrictions. Eventually, this led me asking my supervisor if | could research and

implement a way to make this possible.

By the end of this module | am be happy to announce that the project was a success and the
university will be able to use the Raspberry Pis we have available to demonstrate easily with no
special attention a cluster of Linux machines running MPI software.

Although everything seems well and good, the project did have a small number of setbacks that led
to re-organising priorities and plans and deciding which feature wouldn’t be implemented after all.

Of course, being a supporter of the open source ideology that was not a problem, as the project will
be shared publicly and everyone will be contributing in the future, including me.

One of the things that are not included in the current version of the code is the lack of an one-line
unattended SD card imaging program. While, as demonstrated, it is a fairly easy process to create
the cards, | would like to add in the future the option to run the “initSD.py” script with a number of
arguments that will automatically start doing the work instead of asking the user for information.
After all, this tool could be used by technical people that would prefer to input the information
before the script even starts.

Another thing that | wish | had more time to implement is a better user interface. | initially planned
for a “curses” like interface but that part alone would cost several weeks of trial and error and
problematic attempts. Again, this is added in the To-do list for the project in the future.

For the time being the Python script has been tested against Linux systems, specifically Ubuntu ones.
I am confident that it will work with Fedora as well, but since | do not personally own a macOS
device yet, | won’t be able to develop for that efficiently, and will rely on other people’s bug
submissions or even fixes. | do not plan to develop on Windows for the time being because of the
lack of a Unix shell, or until | learn PowerShell like | do Bash.

As described this project relies on the Saa$ git provider GitLab. For larger installations, the number
of requests sent to their service will scale in a proportional manner, and that might become a
problem for the provider. | have not yet hit that limit with six devices running and requesting git
updates every two minutes amounting up to 180 requests per hour (6 nodes times 30 runs per
hour).

For each node added in the cluster one can expect 30 more requests per hour, which can easily scale
since the very purpose of this project is to provide for an easily scalable cluster. To overcome this
problem a user can host their own repository or use the university’s own GitHub server
(github.coventry.ac.uk).

Another limitation of this project this far is the fact that Ansible runs every three minutes on the
master. | would like to make it run only once or twice so that it will be more efficient. To overcome
overlapping problems if one Ansible is not finished in the three-minute window, | have added a

check on the masterRun.sh script to check if the process “ansible” is running and continue only if it is
not.

8. Reflection on ethics

8.1 Social aspect

As | have mentioned earlier, the target audience for this project is academics in higher education
that want to use clusters running MPI software to demonstrate distributed programming to
students. More specifically, Coventry University was the main target so that the project would be
used in the parallel programming module taught to final year students. This project does not
interfere with other networks and as such cannot be considered harmful to anyone, but instead is
promoting education by making teaching materials (for example a cluster) easier to set up.

The project is based on open source software, a community effort and thus | would not feel morally
intact if | did not give it back freely and openly so that others may benefit from it.

8.2 Legal aspect/Licencing

As already clarified, the project makes use of open source libraries, programming languages and
operating systems. It is meant to work with such software and takes advantage of the openness of
said products.

Although | could skip the part of choosing a licence for the project’s code, that would make the work
copyrighted, non-free and not available to usage without my prior consent, as has been pointed out
by Richard Stallman (2015).

Furthermore, | am not bound by the licences for the software that my scripts use, because | am not
using any of their code in my own work. | am merely running scripts on systems that use other open
source software. This gives me the right to choose my own licence at this point.

Because | did not want the users of my scripts to be bound by any open source licence | chose to use
the “Unlicence” aiming to rid the work from any restriction and obligation (Unlicence.org n.d.).

8.3. Ethics

| could not find any fault on the ethical aspect for this project since it does not involve personal
information of any kind, it does not try to hack computers and does nothing that is not already
shown in the public repository that the user can load and inspect.

9. Conclusion

In this project, | have demonstrated how | created a set of tools that work together to enable the
user to set up and configure an OpenMPI cluster of Raspberry Pis using Ansible and git with
minimum intervention.

The evaluation of this project returned positive results that the cluster starts to configure promptly
and automatically when the devices are powered on and connected to the internet. The set-up time
varies depending on the network bandwidth but usually is in the timeframe of 6 - 10 minutes for
each Raspberry Pi connected.

10. Bibliography

Bahyl, V., Chardi, B., Van Eldik, J., Fuchs, U., Kleinwort, T., Murth, M., and Smith Cern, T. (2003)
Installing, Running and Maintaining Large Linux Clusters at CERN. [online] available from
<https://arxiv.org/pdf/cs/0306058.pdf> [30 April 2017]

Becker, D.J., Sterling, T., Savarese, D., Dorband, J.E., Ranawake, U.A., and Packer, C. V. (1995)
BEOWULF: A PARALLEL WORKSTATION FOR SCIENTIFIC COMPUTATION [online] available from
<http://www.phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/ICPP95/icpp95.html>
[30 April 2017]

Broberg, R. (2012) OpenMPI on Raspberry Pi [online] available from
<https://rhinohide.wordpress.com/2012/02/26/openmpi-on-raspberry-pi/> [30 April 2017]

CERN (2012) The Grid: Software, Middleware, Hardware. [online] available from
<https://cds.cern.ch/record/1997392>

Chacon, S. (2014) Pro Git. Berkeley, CA New York, NY: Apress,Distributed to the Book trade
worldwide by Spring Science+Business Media

Cox, S.J., Cox, J.T., Boardman, R.P., Johnston, S.J., Scott, M., and O’Brien, N.S. (2014) ‘Iridis-Pi: A Low-
Cost, Compact Demonstration Cluster’. Cluster Computing [online] 17 (2), 349-358. available
from <http://dx.doi.org/10.1007/s10586-013-0282-7>

DeConinck, A. (2013) Ansible Scripts for My Raspberry Pi Cluster [online] available from
<https://github.com/ajdecon/ansible-pi-cluster> [30 April 2017]

DigitalOcean (2015) Understanding Systemd Units and Unit Files | DigitalOcean [online] available
from <https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-
unit-files> [1 May 2017]

Gardner, G. (2014) Mini-Itx Cluster [online] available from <http://www.mini-
itx.com/projects/cluster/> [30 April 2017]

Geerling, J. (2015) Raspberry Pi Dramble [online] available from
<https://github.com/geerlingguy/raspberry-pi-dramble>

Gropp, W., Lusk, E., and Sterling, T. (2003) Beowulf Cluster Computing with Linux. 2nd edn.
Cambridge, Mass: MIT Press

Heap, M. (2016) ‘Appendix A. Installing Ansible’. in Ansible: From Beginner to Pro [online] Berkeley,
CA: Apress, 159-162. available from <http://dx.doi.org/10.1007/978-1-4842-1659-0_10>

Kiepert, J. (2013) Creating a Raspberry Pi-Based Beowulf Cluster. [online] available from
<http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-
Based.Beowulf.Cluster_v2.pdf> [30 April 2017]

Kirch, O. and Brown, N. (n.d.) exportfs(8) - Linux Man Page [online] available from
<https://linux.die.net/man/8/exportfs> [1 May 2017]

Maroudas, E. (2016) #825340 - Sfdisk: Invalid Option -- ‘R’ on Restoredisk Mode - Debian Bug Report
Logs [online] available from <https://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=825340;msg=2> [30 April 2017]

NSF (2005) $150 Million TeraGrid Award Heralds New Era for Scientific Computing | NSF - National
Science Foundation [online] available from

<https://www.nsf.gov/news/news_summ.jsp?cntn_id=104248> [30 April 2017]

Nvidia and DeConinck, A. (2013) How One NVIDIAN Built a Tiny Server Cluster Out of a Slice of
Raspberry Pi | The Official NVIDIA Blog [online] available from
<https://blogs.nvidia.com/blog/2013/07/17/raspberry-pi/> [30 April 2017]

Python Software Foundation (2014) Ansible 1.7 : Python Package Index [online] available from
<https://pypi.python.org/pypi/ansible/1.7> [1 May 2017]

Rasmusson, J. (2010) The Agile Samurai : How Agile Masters Deliver Great Software. Raleigh, North
Carolina: The Pragmatic Bookshelf

Raspberry Pi Foundation (2014a) Rc.local - Raspberry Pi Documentation [online] available from
<https://www.raspberrypi.org/documentation/linux/usage/rc-local.md> [1 May 2017]

Raspberry Pi Foundation (2014b) Scheduling Tasks with Cron - Raspberry Pi Documentation [online]
available from <https://www.raspberrypi.org/documentation/linux/usage/cron.md> [1 May
2017]

RedHat (2015) Creating and Modifying Systemd Unit Files [online] available from
<https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-
Managing_Services_with_systemd-Unit_Files.html#tabl-Managing_Services_with_systemd-
Service_Sec_Options> [1 May 2017]

Shah, G. (2015) Ansible Playbook Essentials. Birmingham: Packt Publishing

Stallman, R. (2015) Re: Please, No GitHub [online] available from
<https://lists.gnu.org/archive/html/discuss-gnustep/2015-12/msg00182.html> [2 May 2017]

Stephenson, J. (2005) The Humidor Cluster [online] available from
<http://slipperyskip.com/page10.html> [30 April 2017]

Sterling, T. (2002) Beowulf Cluster Computing with Linux. Cambridge, Mass: MIT Press

Swingle, B. and Rhodes, T. (n.d.) Network File System [online] available from
<https://www.freebsd.org/doc/handbook/network-nfs.html> [29 April 2017]

Ubuntu Help (2014) Network File System (NFS) [online] available from
<https://help.ubuntu.com/14.04/serverguide/network-file-system.html> [1 May 2017]

Unix Stackoverflow (2015) Text Processing - Cat Files except One - Unix & Linux Stack Exchange
[online] available from <https://unix.stackexchange.com/questions/246048/cat-files-except-
one> [1 May 2017]

Unlicence.org (n.d.) Unlicense.org » Unlicense Yourself: Set Your Code Free [online] available from
<https://unlicense.org/> [2 May 2017]

Walters, C. (2012) Efficiency of Git versus Tarballs for Source Code Transmission and Storage over
Time | Colin Walters [online] available from <https://blog.verbum.org/2012/06/08/efficiency-
of-git-versus-tarballs-for-source-code-transmission-and-storage-over-time/> [30 April 2017]

11. Appendix
11.1 Project Proposal

300/303COM Detailed Project Proposal

First Name:
Theocharis
Last Name:
Ledakis
Student Number:
5717206
Supervisor:
Dr Carey Pridgeon

SECTION ONE: DEFINING YOUR RESEARCH PROJECT

1.1 Detailed research question

How could the process of deploying a Raspberry Pi cluster in a local network be automated in order to achieve minimal
configuration from the user?

1.2 Keywords

MPI; Raspberry Pi; Ansible; automation; Beowulf cluster; distributed computing

1.3 Project title

An Ansible implementation of a self-configuring Beowulf cluster of Raspberry Pis in a localised environment for the
purpose of distributed computing using Open MPI.

1.4 Client, Audience and Motivation:

This project's client is Dr. Carey Pridgeon, who has requested for a set of tools that can be used in higher education
environments to easily set up any number of Linux nodes. This duster will have open-source software configured and its
purpose will be to be used as teaching material as well as distributed computing system.

One of the key software required by the client is open MPI to be running on all nodes for computation purposes.
Furthermore, as the project question suggests, the final product will require the minimum amount of user configuration to
implement. This leads to the second major requirement, a way for the individual nodes to make themselves known to the
rest, irrespective of local network policies that possibly prevent message broadcasting.

The intended audience is Coventry University students that study modules involving parallel /distributed computation as
well as the academics that deliver those modules.

The implementation that is going to be followed during this project is unique in nature and I strongly feel that will provide
considerable help to users that want to create their own cluster of Linux nodes. This will not be restricted to Raspberry Pis
butrather can be applied to any Linux machine running on the most popular architectures (arm, i386, amd64). The fact
that git repositories will be used makes this project useful for environments that restrict broadcasting, and thus provides
the ability to configure the cluster without advanced technical knowledge.

1.5 Primary Research Plan

The implementation plan will be consisted by the following tasks; a tablet showing the designated weeks those tasks are
planned to be completed follows:

1. Initialize the 8GB SD cards for this project, with Rasbian, correct permissions, updates, appropriate users. Create
a repository on the University's GitHub or on GitLab, share access with supervisor. Get the project's hardware
from supervisor (at least 16 Raspberry Pis, chargers, cables). Research and make a request for a switch to try
them later on.

2. Write necessary scripts/configuration to advertise the nodes' information on a shared git repository.

3. Create a security model using ssh client-server keys to implement a trust model between all the nodes.

4. Create an Ansible playbook that will be used to implement all initial steps to configure the images. There will be
one or more playbooks that can all be used on the same node (for example, node and master node).

5. Test 1: Deploy on three Raspberry Pis and check the code works (they manage to establish connection between
them). Each node should be able to get the table of addresses/hostnames of the rest in reasonable time and each
can ssh to each other using the preset ssh keys.

6. If there are problems with the first test, allowing three days' time to solve them.

7. Test 2: Deploy on 16 or more Raspberry Pis with one acting as a master node. All should, in reasonable time,
discover the master node and advertise their address/hostname to the repository. The master node should be
able to ssh to all of them using the preset ssh keys.

8. Iftest 2 introduces problems, allow a week to fix.

9. Create Ansible playbook that will install and configure open-mpi as well as the rest of the software needed for
the purposes of the project. Deploy to a master and a regular node.

10. Test 3: Re-image the (previously tested) Raspberry Pis from test 2 to include the Open MPI tests and test the
following:

a. SSH connectivity between the nodes (most important is master <--> node)
b. Open MPI configuration working with all nodes in the cluster.

11. If there are problems with test 3, allow a week to fix them.

12. Write documentation for the project. The documentation will include a network map, a guide for deploying the
images to SD cards, applying Ansible playbooks and additional information on how to add extra software/scripts
to the cluster.

13. Allowing two weeks' time for unexpected problems/setbacks. If there is enough time, research and implement an
optional alternative way for local node discovery using avahi-daemon (a zeroconf implementation) for networks
that allow broadcasting. (Johns 2002)

14. Write project report and submit.

Plan table:
Week Date Plan Steps

1 06/12/2002 1,2,3

2 13-19/2 45

3 20-26/2 6,7

4 27/25/3 89

5 06/12/2003 10,11

6 13-19/3 11,12

7 20-26/3 13

8 27/3-2/4 13

9 03/07/2004 Presentation

- 8-28/4 14

SECTION TWO: ABSTRACT AND LITERATURE REVIEW

2.1 Abstract

The purpose of this study is to showcase a set of custom tools created to enhance the process of configuring any size
clusters of nodes running Unix/Linux Operating Systems. In order to present the results as well as perform testing,
Raspberry Pi computers will be used in a local University network that restricts broadcasting. The tools created will be
usable in any Linux system and licensed under an open-source license. The outcome of this project is expected to be a fully
functional product that will be used inside Coventry University for deploying clusters with minimum interaction from the
user.

2.2 Summary/Mini Literature Review

Distributed computation

Distributed/parallel processing is not a recent computing development; it has been around for at least 20 years. It was
conceived to battle demanding computational problems that required large amounts of processing power. The computers
of the 90s were not capable to deliver, so computer scientists came up with the idea to split the computing parts of
problems into small chunks and let slave nodes do the legwork in order to speed up the process. (Gropp et al. 1996)

In recent years, even though the computational power has increased tremendously, more and more projects in science
need to distribute work load horizontally to achieve faster results. From the big server farms that host large companies’
“cloud” applications to the very laptop we use in daily life the principles of distributing load are being applied to, very
successfully, make the user’s experience better. This lead to introducing this subject to the higher education curriculum
and a big boost of the demand for documentation and specialised implementations of clusters and MPI software. Despite
this demand, there is a small amount of projects trying to simplify the process of deploying distributed systems for
computational purposes, which is the main motive in starting this project.

Raspberry Pi

The use of the Raspberry Pis is chosen because this device costs about 30 GBP and has been introduced to schools and
universities all over the UK and the world. These factors help showcase the effectiveness of the final product by
introducing a considerable number of Linux machines that will successfully be able to auto configure themselves into a
working cluster. There will be knowledge gained from several other similar projects, and the final result will be a
combination of the good parts of each implementation. Some noteworthy projects are:

- The Iridis-pi (Cox et al.2014)
- The 2003 mpich implementation from (Karonis et al. 2003)
- The MPI specification (Gropp et al. 1996)

Useful sources of information will be the following Ansible books as well:

- Ansible Playbook Essentials (Shah 2015)
- Ansible: From Beginner to Pro (Heap 2016)

2.3 Bibliography (key texts for your literature review

e Raspberry Pi foundation (n.d.) SSH (Secure Shell) - Raspberry Pi Documentation [online)] available from
<https://www.raspberrypi.org/documentation/remote-access/ssh/> [3 February 2017]

e Johns, H. (2002) Understanding Zeroconf and Multicast DNS - O‘Reilly Media [online] available from
<http://archive.oreilly.com/pub/a/wireless/2002/12/20/zeroconf.html> [3 February 2017)

e Shah, G. (2015) Ansible Playbook Essentials [online] Packt Publishing. available from
<https://www.amazon.com/Ansible-Playbook-Essentials-Gourav-Shah-
ebook,/dp/B00Z6VSXPW%3FSubscriptionld%3 DOJYNINVW651KCAS56C102%2 6tag%3Dtechkie-
20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%2 6¢reativeASIN% 3D BO0ZEVSXPW >

e Karonis, N.T., Toonen, B., and Foster, I. (2003) ‘MPICH-G2: A Grid-Enabled Implementation of the Message
Passing Interface’. in Journal of Parallel and Distributed Computing [online] vol. 63 (5). 551-563. available from
<http://arxiv.org/abs/cs/0206040> [3 February 2017)

e Heap, M. (2016) ‘Appendix A. Installing Ansible’. in Ansible: From Beginner to Pro [online] Berkeley, CA: Apress,
159-162. available from <http://dx.doi.org/10.1007/978-1-4842-1659-0_10>

e Cox,SJ., Cox,)T, Boardman, R.P., Johnston, S.1., Scott, M., and O'Brien, N.S. (2014) ‘Iridis-Pi: A Low-Cost,
Compact Demonstration Cluster’. Cluster Computing [online] 17 (2), 349-358. available from
<http://dx.doi.org/10.1007/s10586-013-0282-7>

e Geerling, J. (n.d.) IT Automation with Ansible on a Cluster of 6 Raspberry Pi Computers | Opensource.com [online]
available from <https://opensource.com/life/16/2/cluster-computing-with-ansible-and-raspberry-pi> [2 February
2017)

e Bondi, A.B. (1998) Network Management System with Improved Node Discovery and Monitoring. United States:
Google Patents. available from <https://www.google.com/patents/US5710885>

e Techterms (n.d.) Grid Computing Definition [online] available from
<https://techterms.com/definition/grid_computing> [3 February 2017]

e Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996) ‘A High-Performance, Portable Implementation of the MPI
Message Passing Interface Standard’. Parallel Computing [online] 22 (6), 789-828. available from
<file://www sciencedirect.com/science/article/pii/0167819196000245>

11.2 Meeting diary
2" of February 2017

Supervisor: Dr. Carey Pridgeon

Student: Theocharis Ledakis

Date of meeting: 02 Feb 2016

Key topics Discussed:

e Proposal question reviewed

e Discussed the implementation method

e Discussed deliverables

e Clarified one of the terms used in the proposal (distributed vs parallel computing)
e Agreed on the project title and implementation plan structure

Individual action points for next meeting (no more than 3):

e Finish proposal and deliver
e Submit ethics form
e Meet and get the hardware needed (Raspberry Pis) from Carey's office

9 of February 2017

Supervisor: Dr. Carey Pridgeon

Student: Theocharis Ledakis

Date of meeting: 09 Feb 2016

Key topics Discussed:

e Project progress catch-up
e Discussed about the repository | will be using, it will be GitLab
e Talked about the networking and how many | will be using this at the beginning

Individual action points for next meeting (no more than 3):

e Complete ethics form
e Start working on the framework of my literature review
e Have something working next week

Record of individual actions completed + notes:

Regarding the literature review:
e Things that inspired the project for lit review.
e Not just specifically about the project.
e Breakinto subject areas.

Check into 'ganglia’ software to be added to the Raspberry Pi images.

Date of next meeting: 16 Feb 2019

Acknowledgement from Supervisor

Carey Pridgeon
Thu 09/02, 10:53

Theocharis Ledakis ¥

Yes | agree to these meeting record forms.,

£E¥ ¢ Theocharis Ledakis
PN Thu 09/02, 10:51
meeting-20160202docx mesting-20160203docx

2 attachments (25 KB) Download all Save all to OneDrive - Coventry University
Hi, do you agree with the attached forms about the meetings on 2nd February and 9th of February?

Theo

16" of February 2017

Supervisor: Dr. Carey Pridgeon

Student: Theocharis Ledakis

Date of meeting: 16 Feb 2016

Key topics Discussed:

e Project progress catch-up
e Reviewed ethics form
o Talked about ways to identify the individual Raspberry Pis on the cluster

Individual action points for next meeting (no more than 3):

e Do work as agreed on the proposal for the individual weeks’ timetable
e Start working on the literature review

Record of individual actions completed + notes:

As a second way of identifying the Raspberry Pis on the cluster, the status and power LEDs on
them could be used to blink and show the numeric ID in a binary format. Try to design a plan for

this.

Date of next meeting: 23 Feb 2019

Acknowledgement from Supervisor
Meeting notes

®

Carey Pridgeon
Thu 16/02, 10:51

agreed

Theocharis Ledakis
Thu 16/02, 10:51

Carey Pridgeon ¥

Sent ltems

meeting-20160216.docx
12 KB

Download Save to OneDrive - Coventry University
Hi, these are the notes from today, agreed?

Theo

24 of February 2017

Supervisor: Dr. Carey Pridgeon

Student: Theocharis Ledakis

Date of meeting: 24 Feb 2016

Key topics Discussed:
e [ntroduction to Prof. Chao

o Key points for next meeting
e Discussions on initial work plan

Date of next meeting: 2 March 2017

Individual action points for next meeting (no more than 3):

e Do more work on the literature review
e Begin working on the dissertation report's structure

Record of individual actions completed + notes:

Prof. Chao might have some useful information for the development of this project.

Acknowledgement from Supervisor
Carey Pridgeon

Fri 24/02, 14:24

agreed

Theocharis Ledakis

Fri 24/02, 14:24

Carey Pridgeon ¥

Sent [tems

mesting-20160224docx

Download Save to OneDrive - Coventry University

Meeting notes

2" of March 2017

Supervisor: Dr. Carey Pridgeon

Student: Theocharis Ledakis

Date of meeting: 2 Mar 2016

Key topics Discussed:

e Discussed project progress
e Plan to add more work to the report

Individual action points for next meeting (no more than 3):

e Do more work on the literature review

Record of individual actions completed + notes:

Date of next meeting: 9 March 2017

Acknowledgement from Supervisor

Re: Meeting notes

Carey Pridgeon
Thu 02/03, 10:45

Theocharis Ledakis %
agreed

From: Theocharis Ledakis <ledakist@uni.coventry.ac.uk>
Date: Thursday, 2 March 2017 at 10:44

To: Carey Pridgeon <ab0475@coventry.ac.ule>

Subject: Meeting notes

Agreed?

9" of March 2017

Student:

Supervisor: Dr. Carey Pridgeon

Theocharis Ledakis

Date of meeting: 9 Mar 2016

Key topics Discussed:

Discussed project progress
Literature review points

Individual action points for next meeting (no more than 3):

Progress on the report structure

Record of individual actions completed + notes:
Literature review, discuss about:
How it helps academics, teachers in their work
Comparison of puppet VS Ansible
Educational benefits of the hands-on approach:
o Benefits of deep learning VS surface learning
o Beneficial to younger pupils to be exposed to distributed algorithmic

thinking

Identify the need for the project to create an easy to use tool to deploy the SD

Date of next meeting: 16 March 2017

Acknowledgement from Supervisor

Re: Meeting notes

e Carey Pridgeon
Thu 09/03/2017 10:34

To: Theocharis Ledakis 2

Yeah, probably

From: Theocharis Ledakis <ledakist@uni.coventry.ac.uks>
Date: Thursday, 9 March 2017 at 10:33

To: Carey Pridgeon <ab0475@coventry.ac.ule>

Subject: Meeting notes

Meeting notes, is it ok?

Theo

16" of March 2017

Supervisor: Dr. Carey Pridgeon

Student: Theocharis Ledakis

Date of meeting: 16 Mar 2016

Key topics Discussed:

e Project presentation
e Choice of Ansible as the main automation tool

Individual action points for next meeting (no more than 3):

e Progress on Ansible playbooks

Record of individual actions completed + notes:

Date of next meeting: 23 March 2017

Acknowledgement from Supervisor

Re: Meeting notes 16/03/2017

@ Carey Pridgeon

To: Theocharis Ledakis 2
| think so, very possibly.

From: Theocharis Ledakis <ledakist@uni.coventry.ac.uk> %
Date: Thursday, 16 March 2017 at 11:13

To: Carey Pridgeon <abD475@coventry.ac.ulk>

Subject: Meeting notes 16/03/2017

Agreed?

24" of March 2017

Supervisor: Dr. Carey Pridgeon

Student: Theocharis Ledakis

Date of meeting: 24 Mar 2016

Key topics Discussed:

e What is going to be required from for the final report
o Key presentation points for next week
e Talked about the second supervisor

Individual action points for next meeting (no more than 3):

e Have the structure of the final report ready to showcase?
e Be able to showcase the project working on Raspberry Pis

Record of individual actions completed + notes:
after graduation

the cluster

Date of next meeting: 30 March 2017

e Detailed discussion about the delivery of project and how it is going to progress

e Talk about failure scenarios (if for example the master dies) and recoverability of

Acknowledgement from Supervisor

Re: meeting 24th march

Carey Pridgeon
Fri 24/03/2017 15:18

To: Theocharis Ledakis 2
Mol

Well ak, yes

From: Theocharis Ledakis <ledakist@uni.coventryac.uk=>
Date: Friday, 24 March 2017 at 15:15

To: Carey Pridgeon <ab0475@coventry.ac.ule>

Subject: meeting 24th march

Do you agree with the meeting notes?

11.3 Presentation material

The presentation on the 30" of March 2017 to my supervisor was a short demonstration of the code
| have had prepared then (the bash scripts to automate the IP updating) and the Ansible playbooks
mostly due to the nature of the project being technical.

This was discussed in the last meeting before the presentation on the 24" of March as is shown on
the diary section above this.

Evidence of the technical demonstration of me running the cluster software can be seen in the
commit logs of the repository that day. Specifically, after the commit with hash
9117594d002d3f3e99b1ad54371d33adc6ee0a8b that can be found in the following list of commits:

https://gitlab.com/ledakis/picluster/commits/master

(the individual commit can be found at:
https://gitlab.com/ledakis/picluster/commit/9117594d002d3f3e99b1ad54371d33adc6ee0a8b)

It can be seen, that the next commits, at the time of the presentation meeting, were made by my
scripts as | was showing the supervisor the way the IP updating scripts work.

The following figures in addition to the URL | have provided above provide evidence for the
presentation that took place on the 30" of March with me and the supervisor.

30 Mar, 2017 21 commits

‘@ Merge branch 'master' of gitlab.com:ledakis/picluster
Theocharis Ledakis committed a month ago

@ changed apt command to execute only if git is not installed not every time
Theocharis Ledakis committed a month ago

E‘ff’" new ip for b827eb0db58¢
Raspberry auto-tool committed a month ago h

#7534 new ip for b827eb0db58c¢
DAL Raspberry auto-tool committed a month ago

Mar 30, 2017 10:34am GMT+0100

@ more changes to ru
+" Theocharis Ledakis committed a month ago

'@ disabled ssh keycheck (scary but it is supposed to be a controlled environment)
Theocharis Ledakis committed a month ago

The last commit before the meeting while | was waiting my turn with Supervisor.

https://gitlab.com/ledakis/picluster/commits/master
https://gitlab.com/ledakis/picluster/commit/9117594d002d3f3e99b1ad54371d33adc6ee0a8b

30 Mar, 2017 21 commits

‘,F: Merge branch 'master’ of gitlab.com:ledakis/picluster
¢ Theacharis Ledakis committed a month ago

‘.F: changed apt command to execute only if git is not installed not every time
) Theocharis Ledakis committed a month ago

7154 new ip for b827eb0db58¢
>
oAl Raspberry auto-tool committed a month ago

30, 2017 10:52am GMT+0100

774 new ip for b827eb0dbE
oAl Raspberry auto-tool committed a month ago

‘% more changes to run
N7 Theocharis Ledakis committed a month ago

The next commit was by the automation tool that auto-commited when | demonstrated the IP

updating scripts to my supervisor.

The feedback | received from my supervisor after our meeting is shown in the following figure.

presentation feedback

Carey Pridgeon

Thu 30/03, 11:20

Theocharis Ledakis ¥
interesting presentation, good work evidenced
good research backed work presented

Looks like this will result in a useful education product

Figure: feedback email received from supervisor after the presentation meeting

11.4 Handwritten notes/Diary

A @updict dpqpade.

4}(/(' Moy hoam [book
Get (ow&?/ (Lw\ [boot
dUWG »(’g?o
[mport Yok 4 Givuskons
St Sorvites Ol waik > ~Tickisty sevilc
— oftu /Mf/'
- ol

Mange USpr ~ Subes + Ssh Creds.
sh ambled = cusm g oy be ! (90(how Guf)

Figure 1

L soludious
1) e My am 1wase dile with g fics, rad
b j?ﬂ e&%ww#f Hle mf" Zc 7’1""
fool (FhsTee 7o Tupenewnn)

ket elogant

Q) The m%‘w foo| iw’\scév‘o the necessary P b e
wsp i |wane) i o-d- the Senphs mn outmationty
ON e dﬂnfqr pyocess

(?{c?am{— Solutoy, will frke

Cousi dowaple, mere fime P .
ple et —5 Alse, fifure Pt
" r(%m’&s b lafgr - 1asbian velaises

3) Cu/lw\w'l& Cdaemion " 5oblumre for ol - shiy it

Figure 2: Feedback | have written down while discussing with supervisor after the presentation regarding on whether to
ship a Raspbian image or let the Python script do it.

6o when Washy boks = 1 will Lil(a
ofeumil FIeesjeq wu podes,

W@(&o Wwen Tt Dok Tk i Wbttt
o dak Y ip ‘b%“f [ordey o &2y
iy uﬁﬂ(’ (* dfﬁm.

or Yoo ante o thy feliy v o dos.
(w [ook/rasky 4l

Figure 3

Vatiab, fe be auefyl o1,
s Rl . B
) O choath o oy o
opha Cowﬁ e wer ov

2‘ SSh Opfon 0q ot parfibion +o Gk sshd » 554’ e

’9 ({I‘M" k‘??"\-‘ whey e Genpt asks e Yk pasiword
M odor b wiite b e uis #dgws[cyon.d 7

4) L need Yoo acess gm if Taon ik el gl

5) Ewwls of admins do W{o. ’

|
2 , Lol
|

/

arl

90!:4;‘04-‘ re.loal 4o Starfing. the-daemony fo
= Ooniab Kot deaf @hewn beffor

Poss ible
do

Figure 4

Taselise b

v
-Pusibe © - el one du#(%k ey, 60\\‘12’ "’J‘Mc/‘/
= ushil opeani , opeampi iu‘am‘uc‘J

-

_ Yaw t-ip 2 gk ¥
== gl v
-~ magtoy Hle disco /

- 118 dir > 'W\vw(-\vt’, '7-&44/
- Ast time Wird juka I,'%.\/ (Yc.l«a()

- Mot fol : - Unes abovdece X
= PYfen Taclafiyy into 1 execuble X

- al &'a/o? implemandafior. V

- o3 : - ot fioe o ~>S e pleghors
'. = You 'lfls e M \/
2 W0 Jug 'Mw{w7 1§ Oroed. \{
e e iy g“"‘&'ﬁ?@“ﬁ?m fliag

Figure 5

EN /‘év‘ﬂi%'f i'ﬂb'ré(& Aot wikalies eptin {(:r the
b wages T 0l e e ivags f te sdads a5 yea
o will @ jud ooyl e juh @ Tty il
A }l(ds 'l‘) be. 5"7*‘ “UW, q o ap’{l.,,q Jr/{q%
\'MWH’ L Yefuind iafs
or , T ol juit pace e lohele Hawy tfe 4 siople W Zip Koot
tonkains @ byl nectd B dusble |

o The senpt conld just ajedt fle hecessay, fly in & wibaa

lw <d anid &rtt‘(}.
o 1T o Votpse Hhe mounked ads ad agl He W wher
add e wecesn Hiy

The it fise it W00 b o By ik Ad g iiad
the neicoey Serpls iab o

Figure 6

bk o systom e 1o do (Ol

3 Ve Wekuger Auostic. Hhe Wior oo ket Unow fag
‘p\vfh'(u(ﬂ»s 2 }uc webwove Ound doa het gve.
o due dusty will we @mp Yo Shaudyrd ek wone
Sgsters 0% g Tastbiom (ownest (getacip domdhy)

> adlor \Wﬁ", e SD -, do Mo ey wore
o W’ﬁ'}l\b“\c wetuore (Aparr b F‘ﬁ;;/qf/?,

;d(-m’ ypfre lode) o)v}ml})

B —{-k(, }?.sfc‘u will ;Lr{r cwﬁauh'\y us,‘-\’}‘\f. O’e)fﬁwdal
N W and s5h heps patetie

o fee upr Wik oble b S5k b Ye muter and
Y ML comppaands.

b wanlsbon

Figure 7

